TipsTricksandTraps.nb

Report from the Trenches: Tips, Tricks
and Traps for Mathematica Programmers

Jennifer Voitle
jennifer@treasuryfinance.com

Introduction

A mindmap of some of the items discussed in this presentation follows. (The mindmap was brainstormed in Inspiration 4.0

and imported into Mathematica.) (mindmap disappeared, sorry!)

Why Program in Mathematica?
Off[General: :"spelll"]

Off [General: :"spell"]

= Notebooks!

m Variety of Programming Styles!

newtemps = Drop[Temperatures,-1] +
Deltat dTdt;

Temperatures =
AppendTo [newtemps, newtemps [[Nd2]]];

TipsTricksandTraps.nb

Applications

Air Properties

Air Property data are in form {T [F], k [BTU/hr-ft-F],rho in {Ib/ft*3], mu in [Ibm/ft-hr] }

TipsTricksandTraps.nb

Temperature = Flatten[Join[Table[100 +20i, {i, O, 45}], Table[1050+501i, {i, 0, 9}111;
Conductivity =

1
3600 {.01566, .01615, .01664, .01712, .01759, .01806, .01853, .01899, .01945, .0199,

.02034, .02079, .02122, .02166, .02208, .02251, .02293, .02335, .02376, .02417,
.02458, .02498, .02538, .02577, .02616, .02655, .02694, .02732, .0277,
.02807, .02844, .02881, .02918, .02954, .0299, .03026, .03062, .03097,
.03132, .03167, .03201, .03235, .03269, .03303, .03337, .0337, .03452,
.03533, .03613, .03691, .03768, .03844, .03919, .03993, .04066, .04137};
rho = {.07087, .06843, .06614, .06401, .06201, .06013, .05836, .05669, .05512,
.05363, .05221, .05087, .0496, .04839, .04724, .04614, .04509, .04409,
.04313, .04221, .04133, .04049, .03968, .0389, .03815, .03743, .03673, .03607,
.03543, .03481, .0342, .03362, .03306, .03252, .032, .03149, .031, .03052,
.03006, .02961, .02917, .02875, .02834, .02794, .02755, .02717, .02627,
.02543, .02464, .0239, .0232, .02254, .02192, .02133, .02077, .02024};

1
u = 3600 {.04594, .04718, .04839, .04959, .05077, .05193, .05308, .0542, .05531,

.0564, .05748, .05854, .05959, .06063, .06165, .06266, .06366, .06464, .06561,
.06657, .06752, .06846, .06939, .07031, .07122, .07212, .07301, .07389,
.07477, .07563, .07649, .07734, .07818, .07901, .07984, .08066, .08147,
.08227, .08307, .08386, .08464, .08542, .0862, .08696, .08772, .08847, .09034,
.09216, .09396, .09572, .09746, .09917, .10085, .1025, .10414, .10575};
NPr = {.706, .703, .7, .698, .696, .694, .693, .691, .689, .688, .687, .686, .685,
.684, .683, .682, .682, .681, .681, .68, .68, .68, .68, .681, .681, .681, .681, .682,
.682, .682, .683, .683, .683, .684, .684, .685, .686, .686, .686, .687, .688, .689,
.69, .69, .69, .691, .693, .695, .697, .698, .7, .702, .703, .705, .707, .709};
ThermalConductivity = Transpose[{Temperature, Conductivity}];

AirDensity = Transpose[{Temperature, rho}];

DynamicViscosity = Transpose[{Temperature, mu}];

PrandtlNumber = Transpose[{Temperature, NPr}];

k = Interpolation[ThermalConductivity];

viscosity = Interpolation[DynamicViscosity];

Pr = Interpolation[PrandtlNumber];

density = Interpolation[AirDensity];

Clear[h, gn]

Attributes[h] = {Listable};

NeededTemperatures = Table[501i, {i, 2, 24}];

Rv=1;,Rm=1; ¢c=0.85; Deltap = 80; Nn = .314;

gn :=15.56‘Vdensity[100]Deltap;

NeededTemperatures + 100

FilmTemperatures = 2 ’

npp 7 .. 815 Rv-62° Nn-'%8 pr[T]'/° k[T] gn-®*®
[r-1:= viscosity[T] 525 '

ListPlot[h[FilmTemperatures], PlotJoined -» True, PlotRange » {0, .05}];

TipsTricksandTraps.nb 4

0.05
0.04
0.03 //
0.02
0.01
0 5 10 15 20

m Application: Integration by the Trapezoid Rule

To perform numerical integration, the intrinsic function Nlntegrate may be used. However, the trapezoid method is illus-
trated as it is a good example of the improvement that can be made by using functional rather than procedural programming

in Mathematica.

The basic idea is: given an integrand over the interval {a,b}, partition into n uniformly spaced subintervals of size h =
(b-a)/n. The function is evaluated at each point a + i h, and the integral computed as the sum of the integrals over all
subintervals. Thus, the scheme is:

(Later, we shall treat non-uniformly spaced data.) We shall apply the rule to the sine function on {0,7}, using 10 subinter-

vals. A plot of the composite trapezoid rule can be generated as follows:

sinPlot = Plot[Sin[x], {x, 0, m}, AxesLabel » {"x", "Sin[x]"}, DisplayFunction -» Identity];
points = Partition[Flatten[Table[
7 7 7 97w 7
{{1, 0}, {i, Sin[i]}, {1+ E’ Sln[1+ E]}’ {1+ R—, 0}}, {1, 0, E, E—}]], 2];
trapPlot = Show[Graphics[Line /@ Table[Take[points, {i, i +1}],
{i, 1, Length[points] -1}]], DisplayFunction -» Identity];
Show[sinPlot, trapPlot, DisplayFunction -» $DisplayFunction];

Sin[x]

1 TN

0.8 / \
0.6 /

TipsTricksandTraps.nb 5

= FORTRAN Program

f(x) = sin(x)
a 0

b = 3.14159
sum = 0

n = 10

h = (b-a)/n

Do 10 i =1, n-1
sum = sum + 2*f(a + i*h)
10 continue
sum = sum + f(a) + £(b)
sum = h/2*sum
print *, 'Integral approximated as: ', sum
end

= Procedural Approach in Mathematica

The above code can be duplicated in Mathematica via constructs such as For, Do, Table, and the like. We show Do here for
direct comparison with Fortran.

f[x_] =Sin[x];

a=0;

b =;

sum = 0;

n=10;
b-a

h= ;
n

Do[sum=sum+2 f[a+ih], {i, 1, n-1}];
sum = sum + £[a] + £[b];

h sum
sum = ;
2
Print["Integral approximated as: ", N[sum]]

Integral approximated as: 1.98352

The main difference between FORTRAN and Mathematica here is the lack of an End statement and Do label in the Mathe-
matica code. Also, we were required to wrap N[] around the final result to obtain a numerical value. Unlike FORTRAN,
Mathematica does not have default variable types. All of the above are assumed to be real and numeric.

Print ["Integration by Composite Trapezoidal Rule"]
n = Input ["Enter the number of data points (MAX 100)"]

Print ["Enter the data points, one per line: "]
Do[{x[i], £[i]} = Input["{x, £[x]} = "], {i, 1, n}]
sum = 0;

1
Do [sum = sum + 5 (x[i+1] -x[i]) (E[i+1] + £[i]), {i, 1, n-1}]

Print ["Integral approximated as: ", sum]

TipsTricksandTraps.nb

= Functional Approach in Mathematica

The preceding calculation can be substantially improved if we take advantage of Mathematica's list structure. Actually, all
that is really involved in the trapezoid rule does is creating a list of function values, summing them and multiplying by the
appropriate weighting factor: h if an interior point, h/2 if an end point. Then let us attack the problem from this viewpoint.
First, create the list of function values using Table:

f[x_] =Sin[x];

a=0;

b =r;

n=10;
b-a

h = ;
n

FunctionValues = Table[f[i], {i, a, b, h}]

. 7T . us . 3 . 2
{O, Sln[ﬁ}, Slnl:g}, Sln{ﬁ], Sln{?],
. 3 . 7 . 4 . 9
1, Sln[?ﬂ}, Sln[l—g}, Sln[?ﬂ}, Sln[l—ﬂ}, O}

Now, we'll sum them using the appropriate weighting factors. One way to accomplish this is to create a table of weighting
factors {1,2,2,...2,1} and use the vector product to multiply.

Table[2, {i, 1, Length[FunctionValues]}] /. #1[1] » 1
{2, 2,2,2,2,2,2,2,2, 2,2}

1
N[Py hPlusee (%97.FunctionValues) |
1.983523537509454504

Take[FunctionValues, {2, -2}] /. {x__, y__}-x+y

27
5

471
5

7
10

37

97
5]

]+Sin[37T T

1+Sin[%}+sin[w]JrSin[}+Sin[]+Sin[}+Sin[}+Sin[

o]

The above statements may be put together into a procedure which takes as input the list of function values and returns the
computed sum.

TrapezoidRule[f_Symbol, {a_, b_}, n_Integer?Positive] :=

a
Module[{h = , FunctionValues = Table[£[i], {i, a, b, h}]},
1
N[—2- h (£[a] + £[b]) + Take[FunctionValues, {2, -2}] /. {x__, y_}»x+y]|]

Timing[TrapezoidRule[Sin, {0, xw}, 10]]

{2.399999999999999911 Second, 1.983523537509454504}

TipsTricksandTraps.nb

= Thermodynamics

Needs["Engineering Thermodynamics "] (* my package, not part of Mathematica =*)
interpolate[PressureTable, P == 0.2]

.001061 m? .884 3
{Pe 0.2 Mega Pascal, T 120.23Celsius, vf > M, vig—> M,
kg kg
0.8857m? 504.49kJ 2025. kJ 2529.5kJ 504.7kJ
vgo ——, uwf-» —, vfg» ——, uvyg» ———, hf» ———,
kg kg kg kg kg
2201.9%kJ 2706.7 kJ 1.5301kJ 5.597 kJ 7.1271kJd
hfg» ——, g —, sf > ——, sfg> ———, s 97}
kg kg K kg K kg K kg
u[0.8]
404.4777

I can solve for any conditions, interpolating at constant entropy between two points, for example.

= Flow Over a Conduit

TipsTricksandTraps.nb

= Experimental Results

Module BA Version 2, z = 6 mm , 30 inch water column

80

60

40

20

0 25 50 75 100 125 150 175

= Versatility

Tips

m Lists

Lists are very useful in Mathematica. Functions such as Transpose, . (vector dot product) are very useful. Often it is
necessary to set the Attributes of a list to get the desired behavior.

= Transpose
This is commonly used to combine two one-dimensional lists to create ordered pairs:

Transpose[{Range[10], Range[10] 3 }1

{{1, 1}, {2, 8}, {3, 27}, {4, 64}, {5, 125},
{6, 216}, {7, 343}, {8, 512}, {9, 729}, {10, 1000}}

An application where Transpose is useful is in building up property data tables, such as {T,k[T]}, {T, cp[T]}, etc. where
you don't want to keep typing T.

m Vector Dot Product

From the 1D Glass Tempering program, air properties are computed as

TipsTricksandTraps.nb

m Coefficients for Thermophysical Properties of Gases

3.89538 1.3612 6.4073

air[specificheat] = {0.239496, - P , - };
105 107 10!t
35.989
air[density] = {——},
103
))) 2.2879728 6.2597929 3.1319564 8.1503801
air[viscosity] = { , , - , 3};
106 108 10t 1015
1.3003035 9.3676581 4.4424691 2.317158 6.5997572
air[conductivity] = { ’ r - ’ r - };
103 105 108 10t 1015
2.58445 1.31976 2.42548
Co2[specificheat] = {0.144592, , - , }i
104 107 10%?
1.2543264) 5
Co2[density] = {—————;———, 5.2174396 107, 4.168310410°};
10
1.2514321 5.5159602 1.5943186
CO2[viscosity] = {— ’ ;- }F
10’ 108 10t
2.2264193 4.7567075 6.2085195 3.7732778
CO2 [conductivity] = {- , , , - }i
103 10° 108 101t
1.10194 3.37414 2.21178
N2 [specificheat] = {0.200469, ;- , };
104 108 1012
6.8243029) 5
N2[density] = {_____;___, 3.34718910%, 1.215973910%};
10
1.4524606 7.7017551 6.9103147 4.4701282 1.2082496
N2 [viscosity] = {— ’ r - ’ ;- };
10’ 108 10t 104 107
7.7524326 1.0136155 5.733186 1.8781222
N2 [conductivity] = { , , - , }i
106 10* 108 10t
1.96817 1.28451 3.17949
02[specificheat] = {0.160484, , - , }i
104 10’ 101t
5.237662) 5
O2[density] = {————3———, 3.845544510%, 1.1669908 10°};
10
2.9459735 8.0358693 4.6796539 1.4476799
O2[viscosity] = { ’ ;- ’ };
10’ 108 10t 104
o 4.2081403 1.0082565 4.0254596 1.1396071
02 [conductivity] = {— p ;- ’ };
10* 10* 108 10!t
2.85391 1.98477 6.63724
H20[specificheat] = {0.443222, - ’ ;- };
105 107 10't
9.1882182 , s
H20[density] = {—————;———, 2.0661307 10%, 4.681487410%};
10
3.0769864 4.0698422 7.6276581
H20[viscosity] = {— ’ ;r - };
10° 108 1018
1.3046 3.7561908 2.2179639 1.1115621
H20[conductivity] = { , - , , - }i
102 10% 10’ 1010

Properties[prop_, T] :=
0.12 Plus @@ (CO2[prop] .Table[T*, {i, 0, Length[CO2[prop]] - 1}]) +
0.18 Plus @@ (H20[prop] .Table[Ti, {i, 0, Length[H20[prop]] -1}]) +
0.70 Plus @@ (N2[prop] .Table[T!, {i, 0, Length[N2[propl] -1}1)

TipsTricksandTraps.nb 10

m The Call

Properties[viscosity, 600]

0.00002760371598860775512

m SequenceForm

Application: Lagrange Multiplier technique for Optimization. Calls FindRoot which needs a List, not a List[List]] as
returned by FindRoot. Program has to accept list of user-provided initial guesses and pass to FindRoot, has to be in
Sequence. (Don't want user to have to type something like {x->1, y-> 5, z-> 10} since the program generates Lagrange
Multiplier(s) which also need initial guesses.)

m Optimization by Lagrange Multipliers
First, load in our package:

Needs ["Engineering Optimization'"]

Information["LagrangeMultiplier", LongForm - False]

LagrangeMultiplier[{constraint
function}, {objective
functions}, {args}, {initialguesses}]
constructs the system of linear equations
by the Lagrange Multiplier technique. The
initial guesses include the list of
unknowns plus guesses for the lagrange
multipliers (the number of these is the sum
of the number of unknowns plus the number
of constraint functions + 1)

EXAMPLE: LagrangeMultiplier|

{900 + 1100 d"~2.5 1 + 320 4 1},
{50 pi d*2 1 - 100},{d,1},{0.8,1.4,9}]

If you don't have the engineering package, the input to LagrangeMultiplier is :

TipsTricksandTraps.nb 11

Unprotect [LagrangeMultiplier]
Clear[LagrangeMultiplier]
grad[f_List,arg List] := Flatten[Outer|[D, f,arg]]

LagrangeMultiplier[f_List,obj_List,arg List,initguess_List] :=
Module[{},
equations:=If[Length[obj]<2,
Flatten[
Table[Outer[D, £f,arg] -
lambda[i] Outer[D, {obj[[i]]},arg], {i,Length[objl}]],
Flatten[
Table[Outer[D, £, arg]-lambda[i] Outer[D, {obj[[i]]}, arg]l-
lambda[i+1] Outer|[D, {obj[[i+1]]},arg]l, {i, Length[obj]l-1}]]1];

equations = Table[equations[[i]]==0, {i, Length[arg]}];
equations = AppendTo[equations, Table[obj[[i]]==0, {i, Length[obj]}1];
equations = Flatten[equations];

unknowns= arg;
unknowns = Flatten[AppendTo[unknowns, Table[lambda[i], {i,Length[obj]}]111];
(* result = N[Solve[equations,unknowns]]; *)
result = FindRoot[equations,Evaluate]
Apply[Sequence,
Transpose [{unknowns, initguesses}]]] 1;
Print [result]

1
Protect [LagrangeMultiplier]

Clear[cost,objective]

cost[d_,1_]1 = 900 + 1100 d*2.5 1 + 320 d 1;

objective[d_,1_] = 50 Pi d*2 1 - 100;
LagrangeMultiplier[{cost[d,1]}, {objective[d, 1]}, {d,1},{1,1,1}]

{d -> 0.696934, 1 -> 1.31068, lambdal[l] -> 8.7692}
How does this work? We passed an objective function and cost function to minimize. If we try to use FindRoot, it expects

it's arguments to be in the form lhs == rhs, {x,x0},{y,y0},{z,z0}, ...]. But we have passed in a list of unknowns {x,y,z,...}
and initial guesses {x0,y0,z0,...}. How can we get this in the form {x,x0},{y,y0},{z,z0},...? The secret is in the code below:
FindRoot [equations, Evaluate[
Apply[Sequence,

Transpose [{unknowns, initguesses}]]] 1;

To see how this works, take

unknowns = {x,y,z},initguesses = {1,1,1}. The above code generates

Evaluate[Sequence @@ Transpose[{{x, vy, z}, {1, 5, 10}}]]

Sequence[{x, 1}, {y, 5}, {z, 10}]

This is the required input to FindRoot.

TipsTricksandTraps.nb 12

FindRoot[{x+y+2z ==1, x == Sin[x] Cos[z], x == 2z},
Evaluate[Sequence @@ Transpose[{{x, y, z}, {1, 5, 10}}]]1]

FindRoot::1stol: The line search decreased the step size to within tolerance specified by AccuracyGoal and
PrecisionGoal but was unable to find a sufficient

decrease in the merit function. You may need more than MachinePrecision digits of working precision to
meet these tolerances. More..

-6 -6
{x => 1.94659 10 , y —> 0.999996, z —-> 1.94659 10 }

= Attributes

There are several attributes that may be attached to Mathematica lists. (For details, see Introduction to Numerical Comput-
ing, Robert Skeel and Jerry Keiper.) For user-created functions, a useful attribute is Listable. Consider the following

function f, which is to operate on a list:

Clear|[f]
f[Range[10]]

f[{ll 2/ 3/ 47 57 67 77 87 97 10}1
What we wanted was to map f onto each element of the list. Checking the attributes of f:

Attributes[f]

{3

Attributes[f] = {Listable};
f[Range[10]]

{£[1], £12], £[3], £[4], £[5], £[6], £[7], £[8], £[9], £[10]}

An application of this occured in our Romberg Integration package, where we begin with a list of domain points (say, {a,b}
) and want f of this, that is, f[{a,b}] = {f[a].f[b]}. Most Mathematica functions automatically have this property.

= Caching

Caching is very valuable for speeding up evaluation when using recursive definitions. For example, the Fibonacci numbers
are:

Clear[fib]

fib[n_] := fib[n-1] + fib[n - 2];
fib[0] = £fib[1] = 1;
Timing[fib[15]]
Timing[fib[16]]

{1.816666666666668206 Second, 987}

{2.949999999999999289 Second, 1597}

TipsTricksandTraps.nb

13

Caching is a process where the intermediate values are stored in a table. The first call may sometimes take longer than
non-caching for this reason, but subsequent calls will be take much less time.

Clear[fib]

fib[n_] := fib[n] = fib[n - 1] + fib[n - 2];
fib[0] = £fib[1l] = 1;

Timing[fib[15]]

Timing[fib[16]]

{0.06666666666666642982 Second, 987}

{0. Second, 1597}

Another application of a recursive scheme where caching yields impressive time savings is Romberg Integration, in which

43°'R[i, j-1]1-R[i-1, j-1]
43-1 -1 I
R[i_, 1] :=R[1i, 1] = TrapezoidRule[RangePoints, i];

R[i_, j_] :=R[i, j] =N[

m More Efficient Programming Style should speed program AND Decrease Memory.

Using Share[] reduces memory use for symbols that are accessed repeatedly. Share[] has the effect of overwriting the old

definitions rather than saving them. To see this, we'll use MemoryInUse[] as a tool to compare performance with and
without Share.

startmemory = MemoryInUse[]
10 _
Timing[ZErf[l 14
i=0
MemoryInUse[] - startmemory
810780

{0.08333333333333348137 Second, 5.389744472249423219}

1152

Share won't work on this since it is a question of inefficient programming style. Can use Horner's Rule:

Clear[HornersRule]

HornersRule[f_, EndingValue_] := Module[{}, Last[NestList[1l + f£#1 &, 1+ £, EndingValue]]]

startmemory = MemoryInUse][]
Timing[HornersRule[Erf[1l.], 9]]
MemoryInUse[] - startmemory

872908

{0.01666666666666660745 Second, 5.389744472249423218}

1088

TipsTricksandTraps.nb 14

= MemorylnUse[]

This tool is useful for understanding why your program may be running slowly or your system eventually crashes, especially
when rendering large, complex graphics. What it does:

Information["MemoryInUse", LongForm - False]

MemoryInUse[] gives the number of bytes
currently being used to store all data in the
current Mathematica session.

See WRI Technical Note by Shawn Sheridan (MathSource) about Memory for more information.

He gives the example of creating a large list and trying to clear it:

startmemory = MemoryInUse[];
bigList = Range [105] ;

MemoryInUse[] - startmemory

1598924

Clearing the list does not release the memory allocated to it until the number of pointers to the symbol go to zero:

Clear[bigList]
MemoryInUse[] - startmemory

1601076

Unprotect[In, Out]
Clear[In, Out];
MemoryInUse[] - startmemory

{3

3860

m A List of Constant Length

Clear[UpdatedTemps]
startmemory = MemoryInUse[];
Temperatures = Table[30, {10}];
Do [UpdatedTemps = Take[Temperatures, Length[Temperatures] - 1] +
Table[Random[], {Length[Temperatures] -1}];
Temperatures = AppendTo[UpdatedTemps, UpdatedTemps[[Length[Temperatures] - 2]];
Print["Length of list = ", Length[UpdatedTemps]];
Print [MemoryInUse[] - startmemory], {10}]

TipsTricksandTraps.nb 15

= Using AppendTo May Increase Memory Usage

Clear [UpdatedTemps]
startmemory = MemoryInUse[];
Temperatures = Table[30, {10}];
UpdatedTemps := Take[Temperatures, Length[Temperatures] - 1] +
Table[Random[], {Length[Temperatures] -1}];
Do [Temperatures = AppendTo [UpdatedTemps, UpdatedTemps[Length[Temperatures] - 2]];
Print["Length of list = ", Length[UpdatedTemps]];
Print [MemoryInUse[] - startmemory], {10}]

If you have enough variables like this, your program may eventually reach the machine limit and crash. In this case, the
memory is increasing linearly.

m EnterDialog[]

= Compiling

Once your Mathematica code is written, you can speed it up in several steps, one of which is CompiledFunction. However,
this will only speed up your code when the number of external symbol calls is minimal, ideally zero. The following example
should illustrate this:

Clear[f]

. 2x
flx_, y_]:= xz—+y2_
Timing[Table[f[x, y], {x, 100}, {y, 100}];]
Clear[f]

2x

f = Compile[{x, v}, x2—+Y2-],

Timing[Table[£[x, y], {x, 100}, {y, 100}];]
{33.08333333333333348 Second, Null}

{9.516666666666666608 Second, Null}

NOTE: You cannot use Compile directly with lists. Additionally, be aware of the overhead costs involved with Compile.
Compile doesn't always speed operations up:

Timing[NIntegrate[x, {x, 0, 10}, Compiled -» False]]
Timing[NIntegrate[x, {x, 0, 10}, Compiled -» True]]

{0.0166666666666668295 Second, 50.00000000000000001}

{0.03333333333333343695 Second, 50.00000000000000001}

TipsTricksandTraps.nb

16

= FullForm

m IBM File Format

Tricks

m String Manipulation (ToExpression,ToString,<<)

m Keeping the Leading Zeros

I wanted to keep track of my experimental data files, which begin with the string "L108" and are followed by a four digit

number, starting with 0000. For demonstration, I'll set up and use fileNames[], but in practice this would be the actual
FileNames][].

fileNames[] =

{"Animation of Mod BA Surface", "anything.ma", "BAOUT12.GRD", "BAOUT24.GRD",
"BAOUT50.GR D", "BAOUT6.GRD", "BAOUT75.GRD", "BA Version 2 50 mm Results",
"BAV2_12.ma", "bav224cp.ma", "bav250.ma", "bav26cp.ma", "bav275.ma",

"BA_06.DAT", "BA_12.DAT", "BA_24.DAT", "BA_50.DAT", "BA_75.DAT", "HTFOIL2.CFG",

"Li080000", "L1080001", "L1080002", "L1080003", "L1080004", "L108 0005",
"L1080006", "Mod BA v2 75 mm results", "Module BA V2 12 mm Results",

"Module BA V2 6 iwg", "Module BA v2 6 mm Results", "Module BA 24 mm Results",
"plots .ma", "00O01", "0002", "0003", "0004", "000 5"};

What I want to do is identify all files starting with the string "L108" and eight characters long. This test is not foolproof yet
and needs more work, but will give the idea. Here's what I want the application to do:

listofeligiblefiles =

Select[fileNames[], StringTake[#1, 4] == "L108" && StringLength[#1] == 8 &];

LatestLl08File$ = StringTake[Last [Sort[listofeligiblefiles]], {5, 8}];
inputpromptstring = "The last test number used was " <>

LatestL108File$ <> "\nSave as next number (y/n): ";

FileSaveResp$ = Input [inputpromptstring];

padnumber[x_] := If[Length[IntegerDigits([x]] < 4,

Table["0", {4 - Length[IntegerDigits[x]]}] <> ToString[x], x]

If [ToLowerCase[ToString[FileSaveResp$]] ==="y",

FileSaveName$ = currentdir <> "L108" <> StringTake[

ToString[ToExpression["." <> StringTake[LatestL108File$, 4]] + .00011], {3, 6}],
FileSaveName$ = Input["Enter four digit number for file: "];
FileSaveName$ = currentdir <> ToString[padnumber[FileSaveName$]]];

TipsTricksandTraps.nb 17

FileSaveName$

Quadra 800 HD:glasstech:L108:L108 Images:L1080007

NOTE: I had to create a file L1080000 to get things started.
This works by first finding a list of files which match the pattern L108xxxx. This list is stored as listofeligible-
files.

listofeligiblefiles

{L1080000, L1080001, L1080002, L108000 3, L1080004, L1080006}

Next, I want to strip off the last entry on this list and add 1 to the numeric xxxx field. I can sort, take the Last and use
StringTake to identify this number.

StringTake[Last[Sort[listofeligiblefiles]], {5, 8}]

0006

However, I can't add 1 to a string. If I convert this to a number so addition is possible, I get:

ToExpression[%]

6

My solution was to do the addition anyway, but recover the original number by converting back to a string, comparing the
number of digits in the numeric value with the original number of digits and pad with zeros.

StringTake[
ToString[ToExpression["." <> StringTake[LatestL108File$, 4]] +
.00011], {3, 6}]

0007

How does this work?

StringTake[LatestL108File$, 4]

0006

To save the leading zeros, put a decimal point at the beginning of this number:

ToExpression["." <> StringTake[LatestL108File$, 4]]

0.0006

Now we can add:

%+ .00011

0.00071

TipsTricksandTraps.nb 18

Convert back to a string, and take elements 3 through 6:

StringTake[ToString[ToExpression["." <> StringTake[LatestL108File$, 4]] + .00011], {3, 6}]

0007

Something else that I needed was to allow the user to select a number, say 11, and turn this into 0011. I did this by creating
a function "padnumber[x]" which counts the number of digits in the user input, converts to a string and writes however many
0's are needed to fill out the entry to a four digit number.

padnumber[x_] := If[Length[IntegerDigits[x]] < 4,
Table["0", {4 - Length[IntegerDigits[x]]}] <> ToString[x], x]

padnumber[1]

0001

padnumber[1000]

1000

padnumber|[6]

0006

IntegerDigits[6]

{6}

= 0vsO.

This problem has come up several times in various applications that I have written. The problem is that O is not the same as
0., which can be seen by examining the Head:

{Head[0], Head[0.]}

{Integer, Real}

To understand the problem, note what happens when we multiply:

{0 kJoule, 0. kJoule}

{0, 0. kJoule}

Can we change the Head of a primitive?

Real[0]

Real[0]

TipsTricksandTraps.nb 19

Not likely. There are at least two things to try: Either redefine the properties of 0, or always work with 0.

Another problem is that 0000 and the like are truncated:

{0, 19}

{0, 19}

The relevant applications are: (1) Reading in data and units (for example, Thermodynamics property data); (2) Experimen-
tal Report Writer which keeps track of latest report number (say, 0000) and automatically increments by 1 if user desires.

= Thermodynamics Property Data

The following sample code demonstrates how to attach unit values to imported data, in this case thermodynamic steam table
data, for your own applications. The moral is to never use the integer 0, use 0. instead.

Needs ["Engineering Thermodynamics™"]

interpolate[PressureTable, P == 0.2]

0.001061m3 0.884639m3
- vig ——-——,
kg kg

. m
0.8857 m? 504.49 kJ 2025. kJ 2529.5kJ 504.7kJ
_—juf» ——, vfg» ———, ug»> ———, hf » ———,
kg kg kg kg kg
2201.9kJ 2706.7 kJ 1.5301kJ 5.597kJ 7.1271kJ
hfg- ——, g ——, sf > —————, sfg-> ——, sgai}
kg kg K kg K kg K kg

{P - 0.2 Mega Pascal, T—»120.23 Celsius, vf >

vg =

This was done by the following sequence of commands:

The above numbers represent the pressure, temperature, vf, vg, uf, ufg, ug, hf, hfg, hg, sf, sfg, sg of the water. We want to
associate each of the above values with appropriate units and have rules such as {P -> 0.0006113 MPa, T -> 0.01 C, }.
Let us begin by defining lists of property names and units in order:

listofproperties = {P, T, vf, vg, uf, ufg, ug, hf, hfg, hg, sf, sfg, sg};
units =
m> m® kJ kI kI kJ kJ kJ kJ kJ kJ
{MegaPascal, Celsius, —, —, —, —, —, —, —, —, , , };
kg kg kg kg kg kg kg kg kgK kgK kgkK
interpolate[x_List] := Module[{}, (#1[1] —» #1[2] &) /@ Transpose][
{listofproperties, MapThread[Times, { (#1[1] &) /@ Transpose[{x, Units}], units}]}]]

First, we will match up the units with the numeric property values.
Taking the transpose yields:

TipsTricksandTraps.nb

Transpose[{{0.2, 120.23, .001061, .8857, 504.49,
2025., 2529.5, 504.7, 2201.9, 2706.7, 1.5301, 5.597, 7.1271}, units}]

{{0.2, MegaPascal}, {120.23, Celsius}, {0.001061,

m3 m3
—g}, {0.8857, E},
J

{504.49, k;}, {2025., k;}, {2529.5, t—;}, {504.7, t—;}, {2201.9, t—g},
kJ kJ kJ kJ
{2706.7, Tg}’ {1.5301, Kkg}, {5.597, m}' {7.1271, Kkg}}

This is not quite what we need: we actually want something like a multiplication of the property value and unit. Try the
following:

(#1[1] -» #1[2] &) /@ Transpose[{listofproperties,
MapThread[Times, { (#1[1] &) /@ Transpose[{PressureTable[[1]], Units}], Units}]}]

3 3
{P»0.0006113MPa, T—->0.01Celsius, vf-> m, vg - Mm_, uf - 0,
kg kg

75. 75. . . .
ufg - 2353kJ,ug% 2353kJ,hf»001kJ,hfga 2501 3kJ,hga 2501 4kJ,

kg kg kg kg kg

9.156200000000000001 kJ 9.156200000000000001 kJ

sf -0, sfg-

K kg 1597 K kg }

interpolate[x_List] := Module[{}, (#1[1] - #1[2] &) /@ Transpose|[
{listofproperties, MapThread[Times, { (#1[1] &) /@ Transpose[{x, units}], units}]}]]

interpolate[TemperatureTable, T == 100]

0.001044 m3 1.6729m3
{T»lOO Celsius, P> 0.10135Mega Pascal, vf —» Tm, vg - Tm—,
418.94 kJ 2087.6 kJ 2506.5kJ 419.04 kJ
wfo> —, ufg» ———, uyg» ——, hf » ————,
kg kg kg kg
2257. kd 2676.1kJ 1.3069kJ 6.048 kJ 7.3549 kJ
hfg»> ——, hg-> , sf- ,sfg»*—,sga*—}
kg kg K kg K kg K kg

= Matrix Manipulations

Not finished yet ... writing as a package

TipsTricksandTraps.nb 21

= Potential Flow

Problem Description

The flow conduit shown below has dimensions of 1.6 mx 1.2 m.

The conduit entrance is 0.5 meters wide. The conduit expands along a slanted surface
which starts 0.6 m along the plate and 0.6 m high down to the point 1.2 m along the
conduit bottom. The exit is 1.2 m wide.

A perfect fluid enters the conduit at a velocity of 10 m/s along the free surface.

The flow velocity is zero along the lower surface of the conduit, and varies from zero
to 10 m/s along the entrance and exit planes.

The velocity distribution of the fluid inside the conduit is desired.

Analysis

Potential flow conditions are assumed. In this case, the Laplace equation

Although we are solving for velocities here, the same equation governs temperature and electrostatic distributions.

The most difficult aspect of this problem is the description of the boundary surface. At least two possibities suggest them-
selves: (i) use Mathematica's Table function to build up a list of points; (ii) define functions that describe the
boundary. Here, we show the first method since it seems more natural in Mathemataica.
The solution will proceed in the following steps:
1. Discretize the domain
2. Write the finite-difference form of the Laplace equation (FDE) and boundary
conditions.
3. The FDE is written at each node at which the solution is unknown (all interior points).
4. The resulting system of linear equations is solved and plotted.

TipsTricksandTraps.nb 22

= Parameter and Boundary Definitions

Off[General: :"spelll"]
Off [General: :"spell"]

Clear[u]
LengthofPlate =1.6; Deltax =0.2;
. LengthofPlate
n-= Ce:l.l:l.ng[] +1;
Deltax
HeightofPlate =1.2; Deltay =0.2;
HeightofPlate
m = Ceiling[] +1;
Deltay

boundary = {{1, m}, {n, m}, {n, 1}, {m, 1}, {4, 4}, {1, 4}, {1, m}};
geometry = Line /@ Partition[boundary, 2, 1];
boundarySurface = Graphics[geometry];

Discretization

Describing the surface takes some experimentation. For our particular geometry, the following code will generate the nodal

points:

nodalpoints = Join[Table[Table[{i, j}, {i, n}], {j, m, 4, -1}],
Table[Table[{i, j}, {i, 8-3, n}], {3, 3, 1, -1}1];

In order to plot our points, we have to wrap Point [] around each pair. One way to accomplish this is via the following
transformation rule. We then wrap Graphics[] around the result and name the whole thing "discretization" for later

reference:

discretization = Graphics[nodalpoints /. {x_, y_} =» Point[{x, y}1];
Show [boundarySurface, discretization,
PlotLabel » " Discretization of boundary surface"];

Discretization of boundary surface

We now wish to write the Laplace equation at each point where the flow field is unknown. The field is unknown at all of the
interior points shown above. Since we already have these defined as nodalpoints, we should use them. The flow velocity is

given along the boundaries, so the unknown values are nodalpoints minus our boundaries.

TipsTricksandTraps.nb

23

Boundarys := Join[Table[u[i, m], {i, n}], Table[u[n, j], {j, m}], Table[u[i, 4], {i, 4}],
Table[u[i, 1], {i, m, n}], Table[u[i+4, -i+4], {i, 2}], Table[u[l, j], {], 4, m}]];
InteriorPoints = Complement [Flatten[nodalpoints /. {x_, y_} » u[x, y]], Boundarys];

A graphical display is the easiest way to check our work:

Domain Plots

Show|[Graphics[Boundarys /. u[x_, y_] » Point[{x, y}]], boundarySurface];

Show|[Graphics[InteriorPoints /. u[x_, y_] » Point[{x, y}]], boundarySurface];

Finite Difference Equation

The finite difference approximation of the Laplace Equation becomes

equation[i_, j_] = Simplify|
ul[i+1, j]-2u[i, jl+u[i-1, j] 1
+

> —~ (u[i, 3+1] -2u[i, j] +uli, j-1]) == 0]
Deltax Deltay

25.u[-1+1, j] +25.u[i, -1 +3] -100.u[i, J] +25.u[i, 1 +3j]+25.u[l+1i, 7] ==0

The given boundary conditions are:

TipsTricksandTraps.nb

24

Boundarys := Join[Table[u[i, m], {i, n}], Table[u[n, j], {j, m}], Table[u[i, 4], {i, 4}],
Table[u[i, 1], {i, m, n}], Table[u[i+4, -i+4], {i, 2}], Table[u[l, j], {3j, 4, m}]];

u[i_, m] :=10/; 121&&1i<n;

10 (3-1)
ul[n, j_] :=—6——/,' j21&&j<m;
uli_, 4] :=0/;i>21&&ix4;
ufi_, 1] :=0/; i2m&&ic<n;
10 (7-4
ull, j_] :=—(;—l; j248&7 sm;

Do[u[i+4, 4-i] :=0, {i, 2}1;
nodalpoints /. {x_, y_} »u[x, y]

{{10, 10, 10, 10, 10, 10, 10, 10, 10},

{% ul[2, 6], u[3, 6], ul4, 6], u[5, 6], u[6, 6], u[7, 6], ul[8, 6], 275}

{% ul[2, 5], u[3, 5], ul4, 5], u[5, 5], u[6, 5], u[7, 5], u[8, 5], %}

{0, 0, 0, 0, u(5, 4], u(6, 4], u(7, 4], u[s, 4], 5},

{0, ul6, 3], ul7, 3], u[(8, 31, 170} {0, ul7, 21, u[s, 21, %} {0, 0, 0}}
Write the list of equations:

InteriorPoints /. u[i_, j_] »» equation[i, j]

{83.33333333333333333-100.u[2, 5] +25.u[2, 6] +25.u[3, 5] == 0,

416.6666666666666666+25. u[2, 5] -100.u[2, 6] +25.u[3, 6] ==0,

25.u[2, 5] -100.u[3, 5] +25.u[3, 6] +25.u[4, 5] == 0,

250. +25.u[2, 6] +25.u[3, 5] -100.u[3, 6] +25.u[4, 6] ==0,

25.u[3, 5] -100.u[4, 5] +25.u[4, 6] +25.u[5, 5] == 0,

250. +25.u[3, 6] +25.u[4, 5] -100.u[4, 6] +25.u[5, 6] ==0,

-100. u[5, 4] +25.u[5, 5] +25.u[6, 4] == 0,

25.ul4, 5] +25.u[5, 4] -100.u[5, 5] +25.u[5, 6] +25.u[6, 5] ==0,

250. +25.u[4, 6] +25.u[5, 5] -100. u[5, 6] +25.u[6, 6] ==0,

-100.ul6, 3] +25.u[6, 4] +25.u[7, 3] == 0,

25.u[5, 4] +25.u[6, 3] -100.u[6, 4] +25.u[6, 5] +25.u[7, 4] ==0,

25.u[5, 5] +25.u[6, 4] -100.u[6, 5] +25.u[6, 6] +25.u[7, 5] ==0,

250. +25.u[5, 6] +25.u[6, 5] -100.u[6, 6] +25.u[7, 6] ==0,

-100.u[7, 2] +25.u[7, 3] +25.u[8, 2] == 0,

25.u[6, 3] +25.u[7, 2] -100.u[7, 3] +25.u[7, 4] +25.u[8, 3] ==0,

25.u[6, 4] +25.u[7, 3] -100.u[7, 4] +25.u[7, 5] +25.u[8, 4] == 0,

25.u[6, 5] +25.u[7, 4] -100.uf[7, 5] +25.u[7, 6] +25.u[8, 5] ==0,

250. +25. u[s, 61+25 u[7, 5] -100. u[7, 6] +25.u[8, 6] ==0,

41.66666666666666666+ 25. u[]-100. u[8, 2] +25.u[8, 3] == 0,

83.33333333333333333+25. u[7, 3] +25.u[8, 2] -100. u[8, 3] +25. u[8, 4] == 0,

125.+25.u[7, 4] +25.u[8, 3] - 1oo u[8, 4] +25.u[8, 5] == 0,

166. 6666666666666667+25 u[5] +25.u[8, 4] -100.u[8, 5] +25.u[8, 6] == 0,

458.3333333333333333+25.u[7, 6] +25.u[8, 5] -100. u[8, 6] == 0}

Ideally, we would at this point just call Solve with the above and the list of unknowns InteriorPoints as inputs.

However, the built-in Solve function will take too long on this system, although it works well on smaller systems. We'd

like to put the system into matrix form. The Mathematica function CoefficientList would seem to be ideal for this

TipsTricksandTraps.nb 25

task; unfortunately, it does not work this way! I'd like to compare each expression with InteriorPoints and pick off

the matching coefficients, entry by entry. This problem occurs over and over in solving these systems of equations.

The first step in our solution is to turn the output from Solve into a list. This is easily done by typing:

equationlist =
Table[Flatten[%[i] /. {Equal -» List, Plus -» List}], {i, Length[InteriorPoints]}]

{{83.33333333333333333, -100.u[2, 5], 25.u[2, 6], 25.u[3, 5], O},
{416.6666666666666666, 25. u[2, 5], -100.u[2, 6], 25.u[3, 6], 0},
{25.u[2, 5], -100.u[3, 5], 25.u[3, 6], 25.u[4, 5], 0},

{250., 25.u[2, 6], 25.u[3, 5], -100.u[3, 6], 25.u[4, 6], 0},
{25.u[3, 5], -100. u[4, 5], 25.u[4, 6], 25.u[5, 5], 0},

{250., 25.u[3, 6], 25.u[4, 5], -100.u[4, 6], 25.u[5, 6], 0},
{-100.u[5, 4], 25.u[5, 5], 25.u[6, 4], 0},

{25.u[4, 5], 25.u[5, 4], -100.u[5, 5], 25.u[5, 6], 25.u[6, 5], 0},
{250., 25.u[4, 6], 25.u[5, 5], -100.u[5, 6], 25.u[6, 6], 0},

{-100.u[6, 3], 25.u[6, 4], 25.u[7, 3], 0},

(25.u[5, 4], 25.u[6, 3], -100.u[6, 4], 25.u[6, 5], 25.u[7, 4], 0},
{25.u[5, 5], 25.u[6, 4], -100.u[6, 5], 25.u[6, 6], 25.u[7, 5], 0},
{250., 25.u[5, 6], 25.u[6, 5], -100.u[6, 6], 25.u[7, 6], 0},
{-100.u[7, 2], 25.u[7, 3], 25.u[8, 2], 0},

(25.u[6, 3], 25.u[7, 2], -100.u[7, 3], 25.u[7, 4], 25.u[8, 3], 0},
(25.u[6, 4], 25.u[7, 3], -100.u[7, 4], 25.u[7, 5], 25.u[8, 4], 0},
{25.u[6, 5], 25.u[7, 4], -100.u[7, 5], 25.u[7, 6], 25.ul[8, 5], 0},

(250., 25.u[6, 6], 25.u[7, 5], -100.u[7, 6], 25.u[8, 6], 0},
{41.66666666666666666, 25. u[7, 2], -100. u[8, 2], 25 uls, 3], 0},
{83.33333333333333333, 25. u[7, 3], 25.u[8, 2], -100.u[8, 3], 25.u[8, 4], 0},
{125., 25.u[7, 4], 25.u[8, 3], -1oo ul8, 4], 25.u[8], 0},
{166.6666666666666667, 25 ul7, 5], 25.u[8, 4], 7100 uls, 5], 25.u[8, 6], 0},
{458.3333333333333333, 25. u[7, 6], 25.u[8, 5], -100.u[8, 6], 0}}

The following code will match up the unknowns with their coefficients from Solve. All we have to do is worry about the
right hand sides. This code is general and will work with any list of equations (equationlist) and coefficient lists

(InteriorPoints).

WARNING! Order in the Complement function matters! Look at the two different answers I get by just chang-
ing the order of targuments

First, a sample of Coefficient:

2

Coefficient[{1, x, x?, x°}, x]

{0, 1, 0, 0}
Now take the complement with a list of zeros. The complement function gives the list of elements of the first argument

which are not in any list. First, look for the list of items in
{1,2,3} that are NOT in {0,1,0,0}:

TipsTricksandTraps.nb 26

Complement[{1, 2, 3}, Coefficient[{1, x, x?, x3}, x]]

{2, 3}

This is the answer we expected. Reversing the order means something different to Complement: we are looking for the
items in {0,1,0,0} which are NOT in {1,2,3}.

Complement [Coefficient[{1, x, x2, x3}, x], {1, 2, 3}]

{0}

Generation of Matrix Coefficients from Equations

list = {};
zerolist = Table[0, {Length[InteriorPoints]}];
Do[Do[If[Complement[Coefficient[equationlist[j]], InteriorPoints[i]]], zerolist] === {},
AppendTo[list, 0], AppendTo[list,
Complement [Coefficient [equationlist[[j]], InteriorPoints[i]]], zerolist]]],
{i, Length[InteriorPoints]}], {j, Length[InteriorPoints]}]
list = Partition[Flatten[list], Length[InteriorPoints]]

{{-100., 25., 25., 0, 0, 0, 0, 0, 0, 0O, O, O, O, 0, O, O, 0, O, 0, O, O, 0, O},
{25., -100., 0, 25., 0, 0, 0, 0, 0, 0, O, 0, O, O, 0, O, 0, 0, O, 0, O, O, O},

{25., 0, -100., 25., 25., o0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O},
{0, 25., 25., -100., O, 25., O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O},
{6, 0, 25., 0, -100., 25., O, 25., O, O, O, O, O, O, O, O, O, O, O, O, O, O, O},
{6, o0, 0, 25., 25., -100., O, O, 25., O, O, O, O, O, O, O, O, O, O, O, O, O, O},
{6, 0, 0, 0, 0, 0, -100., 25., 0, O, 25., O, O, O, O, O, O, O, O, O, O, O, O},

{6, 0, 0, 0, 25., 0, 25., -100., 25., O, O, 25., O, O, O, O, O, O, O, O, O, O, O},
{6, 0, 0, 0, 0, 25., 0, 25., -100., O, O, O, 25., O, O, O, O, O, O, O, O, O, O},
{6, 0, 0, 0, 0, 0, 0, 0, 0, -100., 25., O, O, O, 25., 0, O, O, O, O, O, O, O},

{6, 0, 0, 0, 0, 0, 25., 0, O, 25., -100., 25., O, O, O, 25., O, O, O, O, O, O, O},
{6, 0, 0, 0, 0, 0, 0, 25., 0, O, 25., -100., 25., O, O, O, 25., O, O, O, O, O, O},
{6, 0, 0, 0, 0, 0, 0, O, 25., O, O, 25., -100., O, O, O, O, 25., 0, O, O, O, O},
{6, 0, 0, o, o, o, o, o, 0, 0, O, O, O, -100., 25., O, O, O, 25., O, O, O, O},

{6, 0, 0, 0, 0, 0, 0, 0, O, 25., 0, O, O, 25., -100., 25., O, O, O, 25., O, O, O},
{6, 0, 0, 0, 0, 0, 0, O, O, O, 25., O, O, O, 25., -100., 25., O, O, O, 25., O, O},
{6, 0, 0, 0, 0, 0, 0, 0, 0, O, O, 25., O, O, O, 25., -100., 25., O, O, O, 25., 0},
{6, o, 0, o, o, o, o, 0, 0, O, O, O, 25., O, O, O, 25., -100., O, O, O, O, 25.},
{6, 0, 0, 0, 0, o, o, o, 0, O, O, O, O, 25., O, O, O, O, -100., 25., O, O, O},

{6, o, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, 25., 0, O, O, 25., -100., 25., O, O},
{6, o, o, o, o, o, o, o, 0, 0, O, O, O, O, O, 25., O, O, O, 25., -100., 25., O},
{0, o0, 0, 0, 0, 0, 0o, 0o, 0, 0, 0, O, O, O, O, O, 25., O, O, O, 25., -100., 25.},
{0, o, 0o, 0, 0o, 0o, 0o, 0o, 0, 0, O, O, O, O, O, O, O, 25., 0, O, O, 25., -100.}}

To get the right hand side, note that if a constant appears, it is always the first term.

Look at all of the first elements of each equation. There are two cases which can occur: either a number appears, in which
case, we want it in our list of right hand side coefficients (of course, moving it to the right hand side changes its sign); or a
coefficient of an unknown u[i,j] appears. If this is the case, we want the corresponding right hand side value to be zero

TipsTricksandTraps.nb 27

(since that is the only constant appearing. Looking at the FullForm of a typical equation gave us the following idea to do as
described:

rhs = Table[-equationlist[i][1]], {i, Length[InteriorPoints]}] /. x y =0

{-83.33333333333333333, -416.6666666666666666, 0, -250., 0, -250.,
o, 0, -250., 0, 0, 0, -250., 0, O, 0, O, -250., -41.66666666666666666,
-83.33333333333333333, -125., -166.6666666666666667, -458.3333333333333333}

Since our matrix is not tridiagonal, we can't take advantage of the speed of the LinearSolve function in the package

LinearAlgebra. We will solve by matrix inversion instead.
inversematrix = Inverse[list];
solution = inversematrix.rhs;

We now want to map our solution back onto the nodal points for plotting:

nodalpoints = nodalpoints /. {x_, y_} » u[x, y]

{{10, 10, 10, 10, 10, 10, 10, 10, 10},

[22, ul2, 61, ul3, 6], ul4, 6], ul5, 6], ul6, 6], ul7, 6], u[8, 6], =},

3 3
{%, ul2, 5], u[3, 5], ul4, 5], u[5, 5], u[6, 5], u[7, 5], u[8, 5], %},
{0, 0, 0, 0, u[5, 4], ul6, 4], u[7, 4], u[8, 4], 5},

10 5
{0, ule, 3], ul7, 3], uls, 31, —-}, {0, ul7, 2], ul8, 2], <}, {0, 0, O}

Substitute the solution in for the unknowns.

solution = nodalpoints /. MapThread[Rule, {InteriorPoints, solution}]

{{10, 0, 10, 10, 10, 10, 10, 10, 10}, {%, 6.707960708039365723,

6.785234648417354938, 6.954505858708987932, 7.284076844225128642,
7.619931635047708061, 7.903328030670796375, 8.133501784950637739, ?},
{%, 3.379941517073441288, 3.478472026921066094, 3.748711942193468151,
4.561869883143818578, 5.292321665294907228, 5.8598787026848397,
6.297345775798421243, %}, {0, 0, 0, 0, 1.922369080861770287,
3.127606440303262571, 3.946519338975233956, 4.529335948891540865, 5},

{O, 1.349215676081138814, 2.269256264021292686, 2.873478680792508261, %},

{o, 0.9078113602362897114, 1.36198917692386616, %} {0, 0, 0}}

We now have a slight problem. Mathematica's ListPlot3D function will only work with rectangular arrays of
data. To get around this, we can insert 0's where the boundary wall appears (the flow would be zero there anyway of
course!) This method could be adapted to derivative boundary conditions, but seems as though it would not work for
convection-type boundary conditions (boundary conditions of the Third Type).

TipsTricksandTraps.nb

VelocityPoints = Partition|[
Flatten[{Table[solution[[i]], {i, 4}], Flatten[PrependTo[solution[5], {0, O, O, 0}]],
Flatten[PrependTo[solution[6], {0, 0, O, O, 0}]],
Flatten[PrependTo[solution[7], {0, O, O, O, O, 0}11}1, 9]

{{10, 0, 10, 10, 10, 10, 10, 10, 10}, {?, 6.707960708039365723,

6.785234648417354938, 6.954505858708987932, 7.284076844225128642,

7.619931635047708061, 7.903328030670796375, 8.133501784950637739, ?},

{%, 3.379941517073441288, 3.478472026921066094, 3.748711942193468151,
4.561869883143818578, 5.292321665294907228, 5.8598787026848397,

6.297345775798421243, 2}

, {0, 0, 0, 0, 1.922369080861770287,
3.127606440303262571, 3.946519338975233956, 4.529335948891540865, 5},
{O, 0, 0, 0, 0, 1.349215676081138814, 2.269256264021292686, 2.873478680792508261, l%},

{O, 0, 0, 0, 0, 0, 0.9078113602362897114, 1.36198917692386616, %},

{0, 0, 0,0,0,0,0,0, 0}}

ListContourPlot[VelocityPoints];

For some reason, the picture is rendered upside down! Since there don't appear to be any Mathematica commands to

invert a contour graphic, we inverted our data by using Table to put the data in the reverse order.

VelocityPoints = Table[VelocityPoints[i]], {i, 7, 1, -1}];

TipsTricksandTraps.nb

29

ListContourPlot[VelocityPoints, Contours - 20];

It is kind of interesting to see the effects of our discretization in the slanted wall boundary above.

ListContourPlot[VelocityPoints, Contours -» 20, ColorFunction - Hue];

TipsTricksandTraps.nb 30

» Transferring Files Across Platforms

Keep filenames, etc. as generic as possible when writing for more than one platform. Use an .ini file to give current plat-
form info. For example, on the IBM, a Mathematica program might have the command Open["c:\heat\results\filename"]
but this has to be changed on the Mac. Or, might have SetDirectory["Macintosh HD:glasstech: Auxiliary Data Files:"]

which has to be changed as I go from Mac to Mac. Instead, open a file that gives current file info each time. (Going from
IBM to Mac: one thing I want to do is name a FOLDER c:\heat\results" ... but since the Mac uses : as a delimiter, doesn't

work!!!)

Traps

= Pattern Matching

We often have multi-dimensional lists and wish to identify specific portions. For example, the pairs {1,i*3} might be built

up as:

xdata = Range[10];
ydata = xdata3;
datalist = Transpose[{xdata, ydata}]

({1, 1}, {2, 8}, {3, 27}, {4, 64}, {5, 125},
{6, 216}, {7, 343}, {8, 512}, {9, 729}, {10, 1000}}

To identify the first or second points, we can use pattern matching as:

datalist /. {x_, y_}»x

{1, 2, 3, 4, 5,6, 7,8, 9, 10}
However, what if x (or y) were previously defined?

x=9;

datalist /. {x_, y_} > x

{9, 9,9,9 9, 9,9,9,9, 9}
A better way to do this might be to use a pure function, which needs no name.

(#1[1] &) /@datalist
(#1[2] &) /@datalist

{1, 2, 3,4,5,6,7,8,9, 10}

{1, 8, 27, 64, 125, 216, 343, 512, 729, 1000}

TipsTricksandTraps.nb 31

= Caching

Don't cache unless you are using recursion: if you are just going to be using your result once or twice, the extra time
required may not pay off.

Clear([j]

jIx_] := j[x] = Er£[V1 - x? | Besseld[0, x]

Timing[Table[j[i], {i, 10}]]

{2.099999999999999645 Second,

{0, iBesselJ[0, 2] Exfi[+/3], iBesselJ[0, 3] Erfi[2+/2], iBesselJ[0, 4] Exrfi[+/15],
1 BesselJ[0, 5] Erfi[2 \/g}, 1 BesselJ[0, 6] Erfi[\/g], 1 BesselJd[0, 7] Erfi[ll \/?],
iBesselJ[0, 8] Erfi[3+/7 |, iBesselJd[0, 9] Erfi[4+/5], iBesselJ[0, 10] Exfi[3+/11]}}

Clear([j]

jix_] := Erf[V1-x? | Besseld[0, x]

Timing[Table[j[i], {i, 10}]]

{O .25 Second,

{0, iBesselJ[0, 2] Exfi[+/3], iBesselJ[0, 3] Erfi[2+/2], iBesselJ[0, 4] Exrfi[+/15],
1 BesselJ[0, 5] Erfi[2 \/g}, 1 BesselJ[0, 6] Erfi[\/f], 1 BesselJd[0, 7] Erfi[ll \/_3;],
iBesselJ[0, 8] Exfi[3+/7 |, iBesselJ[0, 9] Exfi[4+/5 |, iBesselJ[0, 10] Erfi[3+/11 |}}

