
Illuminating

Numerical Analysis

using Mathematica
Jennifer Voitle and Edward Lumsdaine

Abstract
This paper discusses the experiences of the authors teaching courses in Numerical Analysis to engineering

students at two universities, both pre- and post-introduction of Mathematica. Use of Mathematica in

such courses really enhances and accelerates student learning and comprehension, providing a foundation for

success in subsequent courses. With Mathematica, more realistic and complex applications can be

assigned, since Mathematica has many of the required intrinsic functions to solve real-life problems. Tips

are given to increase student acceptance of Mathematica, as some students will resist it for various reasons.

This paper also discusses the use of Mathematica as a programming language, including transition from

and communication with other languages. Much of the course can be taught using the intrinsic functions

available in Mathematica, but for certain applications extension of the built-in capabilities is required. For

example, in earthquake and vibration engineering, systems of differential equations must be solved whose

forcing functions are given as tabular data. This paper shows how to read in these data from a file and manipu-

late them so that NDSolve can work with them.

One of the most powerful ways to use Mathematica as a teaching tool is via Mathematica Note-

books. The course can be taught electronically - as a "live" textbook. Students can obtain the needed informa-

tion from these Notebooks, which include text, algorithms, animations and problem sets. The paper discusses

such Notebooks to teach Numerical Analysis, including guidelines for effective design. Where desired,

assignments can be given in the "traditional" way of writing computer programs by following algorithms, but

using Mathematica as the programming language. Other assignments can be given which involve the use

or modification of existing Mathematica functions. Freed from the tedious program writing, testing,

debugging and compiling of programs, this method encourages students to explore "what-if" questions by

altering parameters and methods.

NumericalExamples.nb 1

Mathematica as a Programming Language
Mathematica is a rule-based language. Transition from other languages is easy, as Mathematica

provides capabilities for all of the standard constructs, eg. looping, conditional testing, etc. The development

time and size of a Mathematica program will generally be substantially less than in traditional languages

such as FORTRAN, BASIC, C and so forth.

Summing Integers
As an example, consider the problem of summing integers from 1 to some ending value. That is, we seek

‚
i=1

100

i

The FORTRAN code to accomplish this objective is

SUM = 0

WRITEH∗,∗L ' ENTER ENDING VALUE TO SUM TO : '

READH∗,∗L N
DO 10 I = 1, N

SUM = SUM + I

10 CONTINUE

WRITEH∗,∗L SUM
END

Similar code would be written in BASIC:

sum = 0

INPUT "enter ending value to sum to:", n

FOR i = 1 TO n

sum = sum + i

NEXT

PRINT sum

NumericalExamples.nb 2

or in C:

ê ∗ sumint.c −− program to sum from 1 to n ∗ ê
� include < stdio.h >

int main HvoidL
9

long int i, n, sum;

sum = 0;

printf I"Enter ending value to sum to:\n"M;
scanf H"%ld", & nL;
for H i = 1; i <= n; i++L
sum += i;

printf H"The sum is %ld.", sumL;
return 0;

=

Mathematica code

In Mathematica, this program can be written in a single line,since there is a Sum function built in. The upper

index n is passed as a function argument. Suppose that we choose n=100:

‚
i=1

100

i

5050

One unfortunate fact regarding other programming languages is that they only have finite precision. Mathe-

matica has infinite precision, which means that one could ask for the sum of i from one to one billion and

the correct answer would be obtained, an impossible feat in other languages. However, the way that Mathe-

matica does the sum makes the result, while correct, prohibitively slow. To speed things up, change the way

the sum is evaluated. Mathematica has a Range function, which outputs a list ranging over the limits

provided by the user. For example, Range[10] produces the following:

Range@10D

81, 2, 3, 4, 5, 6, 7, 8, 9, 10<

Mathematica has another function, Plus, which takes a set of numbers as its input and returns their sum.

NumericalExamples.nb 3

For example:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

55

To avoid having to type the arguments to Plus, combine it with Range using the command Apply as

follows:

Plus @@ Range@10D

55

Apply works by taking the output form of Range, which was a list of numbers, and replacing this by Plus.

So the output is the sum of the given set of numbers. To appreciate this, compute the sum of integers from 1 to

10000 using both Sum and Apply with Range. Wrap the function Timing around these for comparison. I

am running this on a Macintosh SE/30 running an unenhanced copy of Mathematica. Your times will vary.

$Version

4.0 for Microsoft Windows HJuly 26, 1999L

TimingB ‚
i=1

10000

iF

80.05 Second, 50 005000<

Timing@Plus @@ Range@10 000DD

80. Second, 50 005000<

Fixed Point Iteration
Solve x = g(x) given an initial guess p0, a tolerance tol, and a maximum number of iterations itmax.

NumericalExamples.nb 4

BASIC:

'*************** user's function goes here ***************

DEF fng(x) = (x+1)^(1/3)

'***

tol = 0.0001

itmax = 100

p0 = 1.5 ' initial guess

i = 1

status$= "iterating"

PRINT" Solution of x = g(x) by Fixed Point Iteration"

PRINT"iteration x g(x) "

WHILE (i<=itmax AND status$ <>"Converged")

 pnew=fng(p0)

 PRINT i,p0,pnew

 IF ABS(pnew-p0)<=tol THEN

 status$ = "Converged"

 END IF

 p0 = pnew

 i = i +1

WEND

IF status$ = "Converged" THEN

 PRINT"Method converged in ",i -1

 PRINT" iterations to root ",pnew

ELSE

 PRINT"Method did not converge in ",itmax," iterations."

END IF

NumericalExamples.nb 5

C:

ê ∗ fixedpoint.c−− program to perform fixed point iteration ∗ ê � include <

stdio.h > � include < math.h > � define TOL 0.0001

� define ITMAX 100

� define CONVERGED 1

� define ITERATING 0

double g Hdouble xL; ê ∗ function prototype ∗ ê

int main HvoidL
9
double p0, pnew;

int i = 1;

int status = ITERATING;

printf I"Fixed Point Iteration\n"M;
printf I"Please enter an initial guess:\n"M;
scanf H"%lf", & p0L;
printf I"\nIteration\tx\t\tgHxL\n"M;
while Hi ≤ ITMAX && status ≠ CONVERGEDL 9pnew = g Hp0L;

printf I"%d\t\t%6.8lf\t\t %6.8lf\n", i, p0, pnewM;
if HHfabs Hpnew − p0LL ≤ TOLL status = CONVERGED;

p0 = pnew;

i++;= êê end of while block if Hstatus
 CONVERGEDL
9printf I"\nMethod converged in %d iterations.", iM;
printf I"\nRoot is %6.8lf", pnewM;= else printf

I"\nMethod did not converge after %d iterations.\n", ITMAXM;
return 0;

=

double g Hdouble xL
8

return pow HHx + 1L, H1. ê 3LL; êê users function definition

<

NumericalExamples.nb 6

Mathematica as a C (or BASIC) interpreter:

Clear@gD
g@x_D = Hx + 1L1ê3;
tol = 0.0001;

itmax = 100;

p0 = 1.5;

i = 1;

status = "iterating"

Print@" Solution of x = ", g@xD, " by Fixed Point Iteration"D;
Print@"iteration x gHxL "D;
WhileAi ≤ itmax && status ≠ "Converged",

pnew = g@p0D; PrintAi, "\t\t\t", p0, "\t", pnewE;
If@Abs@pnew − p0D ≤ tol, status = "Converged"D; p0 = pnew; i += 1E

If@status === "Converged",

Print@"Method converged in ", i −= 1, " iterations to root ", pnewD,
Print@"Method did not converge in ", itmax, " iterations."DD

the Mathematica programming language

Of course, Mathematica provides the functions NestList and FixedPoint:

Clear@gD
g@x_D = Hx + 1L1ê3;
itmax = 5;

p0 = 1.5;

NestList@g, p0, itmaxD

81.5, 1.35721, 1.33086, 1.32588, 1.32494, 1.32476<

NumericalExamples.nb 7

Rootfinding

Example: Heat Transfer through Concentric

Cylinders
The analysis of heat transfer through a series of concentric cylinders requires the solution of the following

equation. Determine the thickness Dr = r2 - r1 of the inner cylinder given that





























=









1

2
2

1

2

ln

2640.0
ln2185.2ln

r

r
r

r

r

by all root-finding methods. Note that r2 and r1 are in meters. Take r1 = 0.1575 m. Summarize results. Did

Steffensen's method result in any improvement?

Schematic

Analysis

The given equation must be solved for r2. r1 is given as 0.1575 m. It would be reasonable to expect that r2 >

r1 but r2< 1, say. The solution will be carried out by the Bisection Method, Fixed Point iteration, Steffensen's

Method, Newton's Method and the Secant Method. The solution will be carried out to a tolerance of 0.001 and

all results compared.

NumericalExamples.nb 8

Solution

ü Function Definition

Define r1 and and f[r2]:

r1 = 0.1575;

f@r2_D = LogB r2
r1

F − 2.2185 LogB .264

r2 LogA r2

r1
E
F;

ü Graphical Estimation of Root

Use the Plot command to plot the function for a graphical estimation of the root. We could plot the left hand

side against the right hand side and look for an intersection of the two curves, or set the right hand side to zero

and look for roots of the function. It is the latter approach that we use here:

Plot@f@r2D, 8r2, r1, 1<, AxesLabel → 8"r2", "f@r2D"<D

0.2 0.4 0.6 0.8 1
r2

-30

-20

-10

f@r2D

The root is at approximately r2 = 0.3. For a better estimate on the

Macintosh, click anywhere on the graph. A bounding box will occur and the cursor will change to a compass.

Move the cursor along the curve (don't press down) while holding down the Command (Apple) key. The point

coordinates will be displayed on the lower left of the screen. By this method, the root is at about .302.

ü Solution by Solve

Mathematica has the Solve function, which works really well only for polynomials and simpler non-

polynomial equations. It will not work on our particular function, which is why numerical methods are

necessary.

NumericalExamples.nb 9

N@Solve@f@r2D == 0, r2DD
— Solve::tdep : The equations appear to involve

the variables to be solved for in an essentially non−algebraic way.

— Solve::tdep : The equations appear to involve

the variables to be solved for in an essentially non−algebraic way.

SolveBLog@6.34921 r2D − 2.2185 LogB 0.264

r2 Log@6.34921 r2DF == 0., r2F

ü Bisection Method

This example uses our package, bisection.m, described in the appendix. For now, just use the function

definition:

Bisection@f_, var_, 8LeftEndPoint_, RightEndPoint_<, tol_, itmax_D :=

ModuleA8iteration, func<, a = N@LeftEndPointD; b = N@RightEndPointD;
func = Function@var, fD; PrintA"i\ta\tb\tp\tf@aD\tf@bD\tf@pD"E;
ForAiteration = 1, iteration <= itmax, iteration++,

IWhile@func@aD func@bD > 0, HMessage@Bisection::nosignchangeD;
8a, b< = Input@"Enter new values 8a,b<:"DLD;

MidPoint = N@Hb + aL ê 2D;
PrintAiteration, "\t", N@a, 4D, "\t", N@b, 4D, "\t", N@MidPoint, 6D,
"\t", N@func@aD, 4D, "\t", N@func@bD, 4D, "\t", N@func@MidPointD, 4DE;

If@func@aD ∗ func@MidPointD > 0, a = MidPoint, b = MidPointD;
If@Abs@func@MidPointDD <= tol, Break@DD;ME;

If@iteration <= itmax, Message@Bisection::converged, iteration − 1D,
Message@Bisection::unconverged, itmaxDD;

PrintA"\nThe root is found approximately as \n", N@MidPointDE;
Print@" where the function value is ", func@MidPointD, "."D;E

NumericalExamples.nb 10

Bisection@f@r2D, r2, 8.2, .4<, .001, 10D

i a b p f@aD f@bD f@pD

1 0.2 0.4 0.3 −3.55336 1.69772 −0.0470806

2 0.3 0.4 0.35 −0.0470806 1.69772 0.924903

3 0.3 0.35 0.325 −0.0470806 0.924903 0.470302

4 0.3 0.325 0.3125 −0.0470806 0.470302 0.220581

5 0.3 0.3125 0.30625 −0.0470806 0.220581 0.0891619

6 0.3 0.30625 0.303125 −0.0470806 0.0891619 0.0216669

7 0.3 0.303125 0.301563

−0.0470806 0.0216669 −0.0125472

8 0.301563 0.303125 0.302344

−0.0125472 0.0216669 0.00459939

9 0.301563 0.302344 0.301953

−0.0125472 0.00459939 −0.00396397

10 0.301953 0.302344 0.302148

−0.00396397 0.00459939 0.000320186

— Bisection::converged :

The Bisection Method converged to the root of the function in 9 iterations.

The root is found approximately as

0.302148

where the function value is 0.000320186.

NumericalExamples.nb 11

ü Solution by Fixed Point Iteration

The given equation has to be reformulated in the form r2 = g[r2].

This may most easily be done by adding r2 to both sides of the equation:

á Trial 1

Clear@gD
g@r2_D = f@r2D + r2

r2 + Log@6.34921 r2D − 2.2185 LogB 0.264

r2 Log@6.34921 r2D F

Plot to see if we expect convergence:

Plot@8r2, g@r2D<, 8r2, r1, 1<D

0.2 0.4 0.6 0.8 1

-15

-10

-5

5

It is clear from the plot that this choice of g will cause the method to diverge. A few iterations will verify this:

NestList@g, .4, 5D

80.4, 2.09772, 11.3956, 27.2563, 46.335, 67.3389<

This is a case of monotone divergence. Different formulations of g can be attempted. In this case, conver-

gence will be attained if we solve for the innermost r2 in the nested logs. We find:

NumericalExamples.nb 12






































=
2

2185.2

1

1

2

12

2640.0

r

r

r

Exprr

Clear@gD

g@r2_D = r1 �

.264

K r2

r1
O1ê2.2185 r2

0.1575 �

0.114756

r2
1.45076

Twenty five iterations of the fixed point method and a plot of the path are generated by the code below:

ShowFixedPath@g_Symbol, initguess_, numiterations_, 8a_, b_<D :=

Module@8graph1, lines, x<,
iterates = NestList@g, initguess, numiterationsD; lines = Partition@

Flatten@Table@8iteratesPiT, iteratesPiT<, 8i, Length@iteratesD<DD,
2, 1D; lines = lines ê. linesP1T → 8linesP1, 1T, 0<;

graph1 = Plot@8x, g@xD<, 8x, a, b<, DisplayFunction → IdentityD;
FixedPointPath = Graphics@Line@linesDD; Show@FixedPointPath,
graph1, DisplayFunction → $DisplayFunctionD; iteratesD

NumericalExamples.nb 13

ShowFixedPath@g, .4, 25, 8.2, .4<D

80.4, 0.242991, 0.384908, 0.249113, 0.372905, 0.254543, 0.363136,

0.259386, 0.355046, 0.263721, 0.348254, 0.267613, 0.342492,

0.271111, 0.337561, 0.27426, 0.333314, 0.277095, 0.329634, 0.279648,

0.326432, 0.281947, 0.323634, 0.284018, 0.321183, 0.285881<

This method appears to be exhibiting spiral convergence. It will take a large amount of iterations to converge

since the slope of g[r2] approaches unity (the upper asymptote for convergence) near the root.

Abs@g′@r2DD ê. r2 → .305

0.915321

In fact, fixed point iteration will take 208 iterations to converge to the root of 0.302134. Either NestList or

FixedPoint can be used to illustrate this:

8FixedPoint@g, .4, 207D, FixedPoint@g, .4, 208D<

80.302133, 0.302134<

ü Steffensen's Algorithm

To increase the speed of convergence of the fixed point method,

compute p1 = g[p0], p2 = g[p1]. So far, this is identical to the fixed point method. But now compute

()

012

2
01

0
2 ppp

pp
pp

+−

−
−=

where p is assumed to be a better estimate of the root than p0, p1 or p2. Convergence is attained when |p - p0|

<= tol. If not, p0 is set equal to p and the process is continued.

This algorithm can be easily programmed in Mathematica as:

NumericalExamples.nb 14

Steffensen@x_ListD := xP1T −
HxP2T − xP1TL2

xP3T − 2 xP2T + xP1T
Start by generating the required estimates p1, p2 by NestList. These will be used by Steffensen to get the next

estimate p:

á Iteration 1

x = NestList@g, .4, 2D

80.4, 0.242991, 0.384908<

p = Steffensen@xD

0.317532

á Iteration 2

Now use this as p0 to generate p1 and p2:

x = NestList@g, p, 2D

80.317532, 0.288745, 0.315811<

The improved estimate p is

p = Steffensen@xD

0.302695

á Iteration 3

x = NestList@g, p, 2D

80.302695, 0.301605, 0.302635<

p = Steffensen@xD

0.302135

NumericalExamples.nb 15

á Iteration 4

x = NestList@g, p, 2D

80.302135, 0.302133, 0.302135<

p = Steffensen@xD

0.302134

This is the solution. It took four iterations compared to the two hundred and eight required by fixed point,

dramatically demonstrating the acceleration of convergence.

A simple Steffensen program can be written as follows:

x = NestList@g, .4, 2D;
SteffensenTable = 8<;
Do@p = Steffensen@xD; x = NestList@g, p, 2D;
SteffensenTable = Append@SteffensenTable, pD, 8k, 5<D

SteffensenTable

80.317532, 0.302695, 0.302135, 0.302134, 0.302134<

ü Solution by Newton-Raphson Method

The Newton-Raphson method uses the scheme

()
()i

i
ii

xf

xf
xx

′
−=+1

to approximate the solution of the equation f(x) = 0.

Mathematica has the built-in function FindRoot to approximate the solution of nonlinear equations and

systems of equations by the Newton-Raphson and the Secant methods. The syntax is:

FindRoot[lhs == rhs, {var,guess}] performs rootfinding by Newton-Raph-

son iteration to approximate the solution of the

equation lhs = rhs using the initial estimate guess for the unknown

var.

FindRoot[lhs == rhs, {var,{guess1,guess2}}] performs rootfinding by

Secant iteration using two initial estimates guess1 and guess2 for

the unknown var.

FindRoot[{lhs1==rhs1,lhs2==rhs2,...,lhsn==rhsn}, {var1,guess1},

NumericalExamples.nb 16

{var2,guess2}, ..., {varn,guessn}] returns the numerical approximation

of the system of equations with given initial estimates guess1, guess2,

... for the unknowns.

FindRoot@f@r2D == 0, 8r2, .4<D

8r2 → 0.302134<

To see the intermediate calculations, NestList can be used. Newton's method is a special case of fixed

point iteration, with g defined as follows:

Clear@gD
g@r2_D = r2 −

f@r2D
f′@r2D

Plot@8r2, g@r2D<, 8r2, 0.2`, 0.4`<, PlotLabel → "Newton Form"D

r2 −

Log@6.34921 r2D − 2.2185 LogB 0.264

r2 Log@6.34921 r2DF
1.

r2
− 8.40341 r2 K− 0.264

r2
2
Log@6.34921 r2D2 −

0.264

r2
2
Log@6.34921 r2DO Log@6.34921 r2D

0.25 0.3 0.35 0.4

0.26

0.28

0.32

Newton Form

It is clear that this scheme will converge. NestList will show the calculations:

NestList@g, .4, 10D

80.4, 0.278707, 0.300405, 0.302125, 0.302134,

0.302134, 0.302134, 0.302134, 0.302134, 0.302134, 0.302134<

Convergence attained in five iterations with 0.4 as the initial guess.

NumericalExamples.nb 17

ü Solution by the Secant Method

The Secant method is a variation of Newton's method which replaces the analytical derivative f'[x] by a numeri-

cal approximation

() () ()
h

xfhxf
xf

−+
≈′

Thus, the secant scheme is

()()
() ()

donei
xfxf

xxxf
xx

ii

iii
ii ,...,2,1,0,

1

11
12 =

−

−
−=

+

++
++

Note that two initial guesses x0, x1 are required. The Secant Method is carried out in Mathematica by

calling FindRoot with two initial guesses:

FindRoot@f@r2D == 0, 8r2, 80.2, 0.4<<D

8r2 → 0.302134<

NumericalExamples.nb 18

Function Interpolation and Approximation

Example: Force on a Weightlifter's Back

Polynomial Interpolation

The problem may be solved by fitting an interpolating polynomial through the (angle,force) data. This approxi-

mates the function force(angle) which is then solved for the angle giving a force of 1250 pounds. Alterna-

tively, inverse interpolation may be performed. In this case, an inverse function angle(force) is generated

which may then be evaluated at 1250. Mathematica has the function InterpolatingPolynomial to

perform these tasks. The output is identical to the expanded Lagrange or Newton interpolating polynomial. A

short program, NewtonDividedDifference, is presented to show the intermediate steps of the calcula-

tions.

ü Data Definition and Plot

force@60D = 2103; force@70D = 1410;

force@80D = 1092; force@90D = 497;

WeightLifterData = Table@8i, force@iD<, 8i, 60, 90, 10<D

8860, 2103<, 870, 1410<, 880, 1092<, 890, 497<<

NumericalExamples.nb 19

DataPlot = ListPlot@WeightLifterData,
PlotStyle → PointSize@0.03`D, AxesLabel → 8"angle", "force"<D

65 70 75 80 85 90
angle

750

1000

1250

1500

1750

2000

force

ü Lagrange Form of Interpolating Polynomial

P3@angle_D = Expand@InterpolatingPolynomial@WeightLifterData, angleDD

50 648 −
22 795 angle

12
+
4939 angle

2

200
−
163 angle

3

1500

Plot@P3@angleD, 8angle, 60, 90<, PlotLabel → "Force on back doing squats"D

65 70 75 80 85 90

750

1000

1250

1500

1750

2000

Force on back doing squats

The above graph shows that an angle of approximately 74 degrees will result in a force of 1250

pounds on the back. We will verify this with FindRoot:

NumericalExamples.nb 20

FindRoot@P3@xD == 1250, 8x, 74<D

880.302134, 0.302134, 0.302134< → 74.8241<

Print@"The force exerted on the back while squatting at an angle of ",

%P1, 2T, " degrees is ", P3@xD ê. %, " pounds."D

The force exerted on the back while squatting at an angle of

74.8241 degrees is 850 076.3, 50 076.3, 50 076.3< pounds.

Interpolation by Newton's Divided Differences

ü Description of Procedure NewtonDD

Procedure NewtonDD takes a list of n+1 {x,y} pairs as its input and returns a interpolating polynomial of

degree n in the variable var.

Clear@NewtonDD, xD

NewtonDD@data_List, var_SymbolD :=

Module@8i, n, poly, xx, f<,
xx = var;

Do@xx@i − 1D = dataPi, 1T;
f@i − 1D = dataPi, 2T, 8i, Length@dataD<D;

f@i_, 0D := f@iD;
Hf@n_, i_D := Hf@n, i − 1D − f@n − 1, i − 1DL ê Hxx@nD − xx@n − iDL ê; i > 0L;
Sum@f@i, iD Product@var − xx@j − 1D, 8j, i<D, 8i, 0, Length@dataD − 1<D D

NewtonDD@WeightLifterData, xD

2103 −
693

10
H−60 + xL +

15

8
H−70 + xL H−60 + xL −

163 H−80 + xL H−70 + xL H−60 + xL
1500

In this form, the coefficients a0, a1, a2, ... can easily be identified for checking hand calculations. Expand this

to verify that this form is identical to the Lagrange polynomial:

Expand@%D === P3@xD

True

NumericalExamples.nb 21

ü Solution by Inverse Interpolation

Here we construct a function angle(force) by interchanging the (angle,force) data. This function is simply

evaluated at force = 1250 for the desired angle.

angle@force_D = N@Expand@
InterpolatingPolynomial@Table@8force@iD, i<, 8i, 60, 90, 10<D, forceDDD

73.9901 + 0.0656302 force − 0.0000774083 force
2
+ 2.04647 × 10

−8
force

3

angle@1250D

75.0472

This compares reasonably well to the previous answer.

Cubic Spline Interpolation

ü Solution by Natural Cubic Splines

Mathematica has a built-in spline function, but it does not give the spline equations for evaluation. Here,

we use our own spline package to construct S[0,x] on the interval [60,70]; S[1,x] on [70,80], and S[2,x] on

[80,90]. To locate the angle at which the force is equal to 1250 pounds, note that f[80] = 1092 and f[70] =

1410. Since

1092 < 1250 < 1410, the desired angle is between 70 and 80 degrees. Thus we will perform rootfinding on

S[1,x] = 1250.

The natural cubic spline uses the boundary conditions S''[0,x0]=0 and S''[n-1,xn] = 0.

Here, we import our spline interpolation package, which we have stored in the standard package library in the

folder NumericalMath. (Of course, Mathematica now has its own spline routines.)

Needs@"NumericalMath`SplineInterpolation`"D

Information@"SplineInterpolation", LongForm → FalseD

The package SplineInterpolation contains code for construction of

natural, clamped, periodic and B cubic splines. A plotting utility,

PiecewiseCubicPlot, and integration procedure, IntegrateSpline,

are also provided. For information on usage of these procedures,

type ?NaturalCubicSpline, ?ClampedCubicSpline, ?PeriodicSpline,

?BSplineInterpolation, ?PiecewiseCubicPlot or ?IntegrateSpline.

NumericalExamples.nb 22

Information@"NaturalCubicSpline", LongForm → FalseD

NaturalCubicSpline@88x0,y0<,8x1,y1<,...8xn,yn<<D constructs and prints

a natural cubic spline interpolating the given data points. The

natural spline boundary conditions S''@x0D = S''@xnD=0 are used.

NaturalCubicSpline@WeightLifterDataD

The spline is constructed as follows:

S@0,xD = −18 617. + 1198.29 x − 21.324 x2 + 0.118467 x3 for 60. < x < 70.

S@1,xD = 96 562.4 − 3737.97 x + 49.194 x2 − 0.217333 x3 for 70. < x < 80.

S@2,xD = −65 332. + 2333.07 x − 26.694 x2 + 0.0988667 x3 for 80. < x < 90.

PiecewiseCubicPlot@PlotLabel → "Natural Cubic Spline"D;

65 70 75 80 85 90

750

1000

1250

1500

1750

2000

Natural Cubic Spline

S@1, x_D = 96562.4 − 3737.97 x + 49.194 x2 − 0.217333 x3;

N@Solve@S@1, xD == 1250, xDD

88x → 74.7558<, 8x → 75.7987 − 11.0028 	<, 8x → 75.7987 + 11.0028 	<<

NumericalExamples.nb 23

ü Solution by Clamped Cubic Splines

The package SplineInterpolation.m also has a utility for construction of clamped cubic splines, which match the

function derivatives at the endpoints x0, xn. Then S'[0,x0] = f'[x0], S'[n-1,xn] = f'[xn]. For this example

involving tabular data, we shall approximate the derivatives numerically using three-point forward and back-

ward difference formulas. These formulas are:

()
() () () ()

()
() () () ()221

221

2

43

2

43

hOdifferencebackward
h

xfxfxf
xf

hOdifferenceforward
h

xfxfxf
xf

iii
i

iii
i

−−

++

+−
=′

−+−
=′

The Mathematica code to perform these derivatives is:

Clear@FD3Pt, BD3PtD
FD3Pt@f_List, h_D :=

−3 fP1T + 4 fP2T − fP3T
2 h

BD3Pt@f_List, h_D :=
3 Last@fD − 4 fPLength@fD − 1T + fPLength@fD − 2T

2 h

— General::spell1 :

Possible spelling error: new symbol name "BD3Pt" is similar to existing symbol "FD3Pt".

These equations can be used to approximate our endpoint derivatives as follows:

Derivs = N@8FD3Pt@82103, 1410, 1092<, 10D, BD3Pt@81410, 1092, 497<, 10D<D

8−88.05, −73.35<

The procedure ClampedCubicSpline requires the given data as input and these derivatives. The usage is:

Information@"ClampedCubicSpline", LongForm → FalseD

ClampedCubicSpline@88x0,y0<,8x1,y1<,...8xn,yn<,8y'0,y'n<<D
constructs and prints a clamped cubic spline interpolating

the given data points. The clamped spline boundary

conditions S'@x0D = f'@x0D,S'@xnD = f'@xnD are used.

Modify the weight lifter data to include the derivatives using Append:

Append@WeightLifterData, DerivsD

8860, 2103<, 870, 1410<, 880, 1092<, 890, 497<, 8−88.05, −73.35<<

NumericalExamples.nb 24

ClampedCubicSpline@%D

The spline is constructed as follows:

S@0,xD = −2294.4 + 469.35 x − 10.513 x2 + 0.0652 x3 for 60. < x < 70.

S@1,xD = 87 160. − 3364.41 x + 44.255 x2 − 0.1956 x3 for 70. < x < 80.

S@2,xD = −46 369.6 + 1642.95 x − 18.337 x2 + 0.0652 x3 for 80. < x < 90.

PiecewiseCubicPlot@D;

65 70 75 80 85 90

750

1000

1250

1500

1750

2000

Show@DataPlot, %D

65 70 75 80 85 90
angle

750

1000

1250

1500

1750

2000

force

NumericalExamples.nb 25

NASolveA87 160. − 3364.41 x + 44.255 x2 − 0.1956 x3 == 1250, xEE

88x → 74.8099<, 8x → 75.7213 − 11.7188 	<, 8x → 75.7213 + 11.7188 	<<

Function Approximation by Regression

Regression can be performed in Mathematica by either the Fit function or by loading the Statistics`LinearRe-

gression. This package computes the best fit polynomial as does Fit, but also prints a complete report of the

results including an ANOVA table.

ü The Regression Fits and Roots

DoAfunc = FitAWeightLifterData, TableAanglei, 8i, 0, k<E, angleE;
result = Solve@func == 1250, angleDP1T;
PrintAk, "\t", func, "\t", resultE, 8k, 1, 3<E

1 5127.5 − 51.36 angle 8angle → 75.4965<

2 6475. − 88.11 angle + 0.245 angle
2 8angle → 74.9003<

3 50 648. − 1899.58 angle + 24.695 angle
2
− 0.108667 angle

3

8angle → 74.8241<

N@P3@angleDD

50 648. − 1899.58 angle + 24.695 angle
2
− 0.108667 angle

3

Note that the cubic regression polynomial is identical to the cubic generated by InterpolatingPolynomial.

(WHY?)

What general conclusions can you draw from this?

NumericalExamples.nb 26

Numerical Solution of

Differential Equations

Application

(Dr. Naser Mostaghel's problem)

In earthquake engineering, the following system of ODE's requires solution:

()

() () max00000

22

,,)(

)(

)()(2

tttytytytz

tz
dt

du

tututz
dt

dz
g

≤≤=′=

=

−=Ω++ ααξβ

where ug(t) represents the displacement of the ground with time and u(t) is the resulting displacement of the

structure under consideration. Although Mathematica's intrinsic functions DSolve and NDSolve should

be able to solve this system, the difficulty in solving this particular problem is that ug(t) is usually discrete data

points which must be read in from a data file. Currently, DSolve and NDSolve require continuous inputs,

so some manipulation of the data must be performed before these functions see it.

In the following example, we shall first assume that ug(t) is well-represented by a sine function and will apply

DSolve directly to the problem. We then read in the actual data from the file, manipulate it into a continuous

form and compare the results from DSolveing this to the preceding results.

NumericalExamples.nb 27

ü Parameter Definitions

Clear@u, z, omega, alpha, beta, y0, y0prime, u, z, t, xiD
xi = 0.05; omega = 2. π; alpha = 1.5; beta = 1.0;

t0 = 0.48843; yprime0 = 18.1134; y0 = 1.0;

tend = 6; a = 240; delta = 2.5 omega;

ug@t_D = a Sin@delta tD;

Solution with ug[t] = a Sin[d t]:

Mathematica cannot solve this! This is unfortunately what often happens with highly complex real problems...

Clear@u, zD
solution =

FlattenADSolveA9z′@tD + 2 alpha beta xi z@tD + alpha2 omega2 u@tD == −ug@tD,
u′@tD == z@tD, z@t0D == yprime0, u@t0D == y0=, 8z@tD, u@tD<, tEE

— FactorSquareFree::lrgexp : Exponent is out of bounds for function FactorSquareFree.

— PolynomialGCD::lrgexp : Exponent is out of bounds for function PolynomialGCD.

— FactorSquareFree::lrgexp : Exponent is out of bounds for function FactorSquareFree.

— FactorSquareFree::lrgexp : Exponent is out of bounds for function FactorSquareFree.

— General::stop :

Further output of FactorSquareFree::lrgexp will be suppressed during this calculation.

— PolynomialGCD::lrgexp : Exponent is out of bounds for function PolynomialGCD.

— PolynomialGCD::lrgexp : Exponent is out of bounds for function PolynomialGCD.

— General::stop :

Further output of PolynomialGCD::lrgexp will be suppressed during this calculation.

Had Mathematica had been able to solve this, we would have plotted using the following command:

plot1 = Plot@Evaluate@u@tD ê. solutionD,
8t, t0, tend<, PlotLabel → "displacement u@tD"D

NumericalExamples.nb 28

2 4 6 8 10

displacement u[t]

-2

-1

1

2

Solution with ug[t] read in from a file

The data file, collected from data acquisition software, is shown below. The data are stored in the file

"quakedata".

0.48843 236.435

3.20602 22.9008

5.92361 -223.666

8.6412 -144.339

10. 0.0304909

All that needs to be done is to read in the data in the proper form for Mathematica manipulation, that is, in

the form

{{pair1},{pair2}, ... ,{pairn}}. This can be accomplished with the OpenRead command (here,

it is assumed that the data are contained in the Mathematica folder. If not, the required information would

be included.)

OpenRead@"quakedata.txt"D
GroundData = ReadList@"quakedata.txt", 8Number, Number<D

InputStream@quakedata.txt, 17D

880.48843, 236.435<, 83.20602, 22.9008<,
85.92361, −223.666<, 88.6412, −144.339<, 810., 0.0304909<<

inputdataplot = ListPlot@GroundData, PlotStyle → PointSize@0.03`DD

NumericalExamples.nb 29

4 6 8 10

-200

-100

100

200

A curve-fit of the data (regression, interpolating polynomial, spline, etc) could be attempted. Please refer back

to the previous section if this is desired.

(For example, we could type Fit[GroundData,{Sin[N[delta] t]},t] to obtain the result

240.1597 Sin[15.7079 t]).

Here, we will construct a piecewise-continuous function using Which. First, put the data into the proper form

using the Table command to automate things. This creates a list. Then Which is mapped onto the list, which

is named ug[t].

Clear@ugD
ug@t_D := Which @@ Flatten@Append@

Table@8t ≥ GroundDataPi, 1T && t < GroundDataPi + 1, 1T, GroundDataPi, 2T<,
8i, 1, Length@GroundDataD − 1<D, 8t ≥ GroundDataPLength@GroundDataD, 1T,
GroundDataPLength@GroundDataD, 2T<DD

Plot@ug@tD, 8t, GroundDataP1, 1T, GroundDataPLength@GroundDataD, 1T<,
PlotLabel → "ug@tD from data file"D

2 4 6 8 10

-200

-100

100

200

ug@tD from data file

NumericalExamples.nb 30

Comparison of actual data and Which approximation

Show@%, inputdataplotD

2 4 6 8 10

-200

-100

100

200

ug@tD from data file

Note that if this approximation is unsatisfactory, (perhaps one desires the points to be at the midpoint of the

interval rather than at the left endpoints), this is easily accomplished by modification of the code used to

construct ug[t].

ü Numerical Approximation of Solution of the system of differential equations

We may not have been able to obtain an analytic solution, but we can solve numerically using NDSolve:

Clear@u, zD
solution2 =

FlattenANDSolveA9z′@tD + 2 alpha beta xi z@tD + alpha2 omega2 u@tD == −ug@tD,
u′@tD == z@tD, z@t0D == yprime0, u@t0D == y0=, 8z@tD, u@tD<, 8t, t0, 6<EE

8z@tD → InterpolatingFunction@880.48843, 6.<<, <>D@tD,
u@tD → InterpolatingFunction@880.48843, 6.<<, <>D@tD<

plot2 = Plot@Evaluate@u@tD ê. solution2D,
8t, t0, tend<, PlotLabel → "displacement u@tD"D

NumericalExamples.nb 31

1 2 3 4 5 6

-2

-1

1

2

displacement u@tD

á Comparison of ug[t] from function and from input data

Show@plot1, plot2, PlotLabel → "Displacement from function and data file"D

ü What If

The input data for ug[t] did not give an accurate result because there were too few points to adequately

describe the forcing function. Try solving the problem again with the file quakedata2, which contains the

following points:

0.48843 236.047

0.964009 128.571

1.43959 -139.806

1.91517 -233.222

2.39074 -34.7715

2.86632 207.194

3.3419 189.866

3.81748 -65.0713

4.29306 -238.575

4.76864 -113.512

5.24421 153.605

5.71979 228.493

6.19537 17.4318

6.67095 -215.444

7.14653 -178.702

7.62211 81.6783

8.09769 239.841

8.57326 97.8538

9.04884 -166.594

9.52442 -222.557

 -15

10. -1.35308 10

A regression approximation of these data in the form a Sin[d t] yields 240.00 Sin[15.7079 t]. This is a

NumericalExamples.nb 32

good approximation which will yield a good result.

Solution of 2-D Laplace

Equation

Introduction

The two-dimensional Laplace Equation

0),(
1

2

2

2

2

=+
∂

∂
+

∂

∂
yxg

kyx

θθ

describes two-dimensional, steady state conduction heat transfer. The solution θ(x,y) gives the temperature

T(x,y)- Tinf on a rectangular plate, where Tinf is the temperature of the surroundings. The physical domain is

given as 0 <= x <= PlateLength, 0 <= y <= PlateHeight.

An energy source term g(x,y) is allowed. Admissable boundary conditions are Type 1. The user specifies the

material thermal conductivity k; the boundary functions; the values of the plate dimensions PlateLength and

PlateHeight; and the desired numbers of subintervals in each direction. The program then constructs the finite

difference equation at each interior node and solves for the desired nodal temperature excesses via the Solve

function. The results are presented in the form of contour and surface plots.

The program may be modified to handle three-dimensional geometry, time-dependence and boundary condi-

tions of Types 2 and 3. Also note that Solve is used only for illustrative purposes on this small toy problem. In

other documents, we have used more sophisticated matrix methods. Also note that a variant of the heat equa-

tion is the fundamental formula underlying many financial derivatives, and in other papers these techniques are

applied to problems of financial analysis.

NumericalExamples.nb 33

Example

Determine the temperatures on a rectangular plate. The plate is internally heated by an energy source term

g(x,y) = 1000 Exp[-4 Pi^2 x y]. The plate is 1.0 m by 1.0 m in dimension with thermal conductivity k = 275

W/m-K. The boundary conditions are:

(1) T[x,y] = 100 Sin[Pi y/PlateHeight], x = 0, 0 <=y<=PlateHeight;

(2) T[x,y] = 400 Sin[Pi x/(2 PlateLength)], y = PlateHeight, 0 <=x<=PlateLength;

(3) T[x,y] = 400 y/ PlateHeight, x = PlateLength, 0 <=y<=PlateHeight;

(4) T[x,y] = 0, y = 0, 0 <=x<=PlateLength.

Five subintervals will be taken in each direction.

ü Solution Technique

The finite-difference methods will be used to solve for the steady temperatures on a square plate subject to

Type 1 boundary conditions T(x,0) = T(0,y) = 100; T(x,H) = T(L,y) = 0. The plate is subdivided into four

equally-spaced subdivisions in each direction. The plate thermal conductivity is uniform and there is no

internal energy generation. The governing equation is

D[T[x,y],[x,2}] + D[T[x,y],{y,2}] == 0 which is written in finite difference form as Ti,j+1 + Ti,j-1 + Ti+1,j +

Ti-1,j - 4Ti,j = 0,

i = 1, ... , 4, j = 1, ... , 4.

Solution

The finite-difference equation is defined as eq[i,j]:

NumericalExamples.nb 34

Clear@u, g, eq, TD
PlateLength = 1.0; H∗ m ∗L
PlateHeight = 1.0; H∗ m ∗L
NumberofXSubintervals = 5;

NumberofYSubintervals = 5;

DeltaX = PlateLength ê NumberofXSubintervals;
DeltaY = PlateHeight ê NumberofYSubintervals;
k = 275; H∗ Wêm−K ∗L
g@i_, j_D = 1000 Exp@N@−4 Pi^2 i DeltaX j DeltaYDD;
equation@i_, j_D := HHu@i + 1, jD − 2 u@i, jD + u@i − 1, jDL ê DeltaX^2 +

Hu@i, j + 1D − 2 u@i, jD + u@i, j − 1DL ê DeltaY^2 == 0L
— General::spell1 :

Possible spelling error: new symbol name "NumberofYSubintervals" is similar

to existing symbol "NumberofXSubintervals".

— General::spell1 :

Possible spelling error: new symbol name "DeltaY" is similar to existing symbol "DeltaX".

Boundary Conditions

H∗ Along the side x = 0, 0 ≤ y ≤ PlateHeight ∗L
u@0, j_D := N@100 Sin@Pi j ê NumberofYSubintervalsD D

H∗ Along the side y=PlateHeight,0<=x<=PlateLength ∗L
u@i_, NumberofYSubintervalsD := 400 Sin@Pi i ê H2 NumberofXSubintervalsLD

H∗ Along the side x=PlateLength,0<=y<=PlateHeight ∗L
u@NumberofXSubintervals, j_D := 400 j ê NumberofYSubintervals
H∗ along the side y=0,0<=x<=PlateLength ∗L
u@i_, 0D := 0

Now construct and print out the finite difference equations to be solved (one equation is written for each node

at which the temperature is unknown.:

Mathematica constructs the list of equations, one at each point at which the temperature is unknown, with the

following command:

NumericalExamples.nb 35

Equations = Flatten@
Table@
Simplify @ equation@i, jD D ,

8i, NumberofXSubintervals − 1<, 8j, NumberofYSubintervals − 1<D
D

81469.46 + 25. u@1, 2D + 25. u@2, 1D == 100. u@1, 1D,
2377.64 + 25. u@1, 1D + 25. u@1, 3D + 25. u@2, 2D == 100. u@1, 2D,
2377.64 + 25. u@1, 2D + 25. u@1, 4D + 25. u@2, 3D == 100. u@1, 3D,
4559.63 + 25. u@1, 3D + 25. u@2, 4D == 100. u@1, 4D,
25. Hu@1, 1D + u@2, 2D + u@3, 1DL == 100. u@2, 1D,
25. Hu@1, 2D + u@2, 1D + u@2, 3D + u@3, 2DL == 100. u@2, 2D,
25. Hu@1, 3D + u@2, 2D + u@2, 4D + u@3, 3DL == 100. u@2, 3D,
5877.85 + 25. u@1, 4D + 25. u@2, 3D + 25. u@3, 4D == 100. u@2, 4D,
25. Hu@2, 1D + u@3, 2D + u@4, 1DL == 100. u@3, 1D,
25. Hu@2, 2D + u@3, 1D + u@3, 3D + u@4, 2DL == 100. u@3, 2D,
25. Hu@2, 3D + u@3, 2D + u@3, 4D + u@4, 3DL == 100. u@3, 3D,
8090.17 + 25. u@2, 4D + 25. u@3, 3D + 25. u@4, 4D == 100. u@3, 4D,
2000. + 25. u@3, 1D + 25. u@4, 2D == 100. u@4, 1D,
4000. + 25. u@3, 2D + 25. u@4, 1D + 25. u@4, 3D == 100. u@4, 2D,
6000. + 25. u@3, 3D + 25. u@4, 2D + 25. u@4, 4D == 100. u@4, 3D,
17 510.6 + 25. u@3, 4D + 25. u@4, 3D == 100. u@4, 4D<

Now write the unknowns

Unknowns = Flatten@ Table@u@i, jD,
8i, NumberofXSubintervals − 1<, 8j, NumberofYSubintervals − 1<DD

8u@1, 1D, u@1, 2D, u@1, 3D, u@1, 4D, u@2, 1D, u@2, 2D, u@2, 3D, u@2, 4D,
u@3, 1D, u@3, 2D, u@3, 3D, u@3, 4D, u@4, 1D, u@4, 2D, u@4, 3D, u@4, 4D<

Show a schematic of the plate nodal temperatures:

MatrixForm@ Temperatures = Table@u@i, jD,
8i, 0, NumberofXSubintervals<, 8j, 0, NumberofYSubintervals< D D

0. 58.7785 95.1057 95.1057 58.7785 0.

0 u@1, 1D u@1, 2D u@1, 3D u@1, 4D 100 J−1 + 5 N

0 u@2, 1D u@2, 2D u@2, 3D u@2, 4D 100 2 J5 − 5 N

0 u@3, 1D u@3, 2D u@3, 3D u@3, 4D 100 J1 + 5 N

0 u@4, 1D u@4, 2D u@4, 3D u@4, 4D 100 2 J5 + 5 N
0 80 160 240 320 400

NumericalExamples.nb 36

Now solve the system of linear equations for the unknowns:

result = Solve@Equations, UnknownsD

88u@1, 1D → 50.8159, u@1, 2D → 90.5593, u@1, 3D → 113.124, u@1, 4D → 120.593,

u@2, 1D → 53.9256, u@2, 2D → 103.192, u@2, 3D → 146.236, u@2, 4D → 186.863,

u@3, 1D → 61.6947, u@3, 2D → 122.046, u@3, 3D → 181.767, u@3, 4D → 245.51,

u@4, 1D → 70.8067, u@4, 2D → 141.532, u@4, 3D → 213.275, u@4, 4D → 289.802<<

Put the temperatures in a convenient form for plotting:

Temperatures = Temperatures ê. Flatten@resultD

:80., 58.7785, 95.1057, 95.1057, 58.7785, 0.<,
:0, 50.8159, 90.5593, 113.124, 120.593, 100 J−1 + 5 N>,

:0, 53.9256, 103.192, 146.236, 186.863, 100 2 J5 − 5 N >,

:0, 61.6947, 122.046, 181.767, 245.51, 100 J1 + 5 N>,

:0, 70.8067, 141.532, 213.275, 289.802, 100 2 J5 + 5 N >,

80, 80, 160, 240, 320, 400<>

Plots

ListPlot3D@Temperatures, PlotLabel → "Steady Plate Temperature"D

NumericalExamples.nb 37

Steady Plate Temperature

1

2

3

4

5

6
1

2

3

4

5

6

0

100

200

300

400

1

2

3

4

5

ListContourPlot@Temperatures,
PlotLabel → "Steady Plate Temperature", ColorFunction → HueD

NumericalExamples.nb 38

1 2 3 4 5 6

1

2

3

4

5

6

Steady Plate Temperature

NumericalExamples.nb 39

Appendix
Code for CubicSplineInterpolation.m

BeginPackage@"NumericalMath`SplineInterpolation`"D
SplineInterpolation::"usage" =

"The package SplineInterpolation contains code for construction of

natural, clamped, periodic and B cubic splines. A plotting utility,

PiecewiseCubicPlot, and integration procedure, IntegrateSpline,

are also provided. For information on usage of these procedures,

type ?NaturalCubicSpline, ?ClampedCubicSpline, ?PeriodicSpline,

?BSplineInterpolation, ?PiecewiseCubicPlot or ?IntegrateSpline. "

NaturalCubicSpline::"usage" =

"NaturalCubicSpline@88x0,y0<,8x1,y1<,...8xn,yn<<D
constructs and prints a natural cubic spline

interpolating the given data points. The natural spline

boundary conditions S''@x0D = S''@xnD=0 are used."

ClampedCubicSpline::"usage" =

"ClampedCubicSpline@88x0,y0<,8x1,y1<,...8xn,yn<,8y'0,y'n<<D
constructs and prints a clamped cubic spline interpolating

the given data points. The clamped spline boundary

conditions S'@x0D = f'@x0D,S'@xnD = f'@xnD are used."

BSplineInterpolation::"usage" =

"BSplineInterpolation@88x0,y0<,8x1,y1<,...8xn,yn<,8y'0,y'n<<D
constructs and prints a B−spline interpolating the given

data points. Both natural and clamped spline boundary

conditions S'@x0D = f'@x0D; S'@xnD = f'@xnD; S''@x0D =

S''@xnD = 0 are used. The B−Spline does not interpolate the

given data at the points 88x1,f@x1D<,8xn−1,f@xn−1D<<.
NOTE: n must be >2 for BSplineInterpolation."

PeriodicSpline::"usage" = "PeriodicSpline@88x0,y0<,8x1,y1<,...8xn,yn<<D
constructs and plots a periodic spline. This procedure is used for

plotting smooth, closed curves. The periodic boundary conditions

S@x0D = S@xnD, S'@x0D = S'@xnD and S''@x0D = S''@xnD are used."

IntegrateSpline::"usage" = "IntegrateSpline computes the

integral of the spline over the interval @x@0D,x@nDD.
It is not intended for use with PeriodicSpline."

CubicSpline::"smallnerr" = "Number of data points, n =`1` is insufficient

for spline interpolation: you must provide at least `2` data points."

CubicSpline::"nonfunctionerr" = "The x coordinates provided

`1` do not describe a function. The x's must be unique."

PiecewiseCubicPlot::"usage" = "PiecewiseCubicPlot@D constructs a plot

of the constructed spline. The option PlotPoints−>num may be

included. Otherwise, the default value of PlotPoints is used.

NumericalExamples.nb 40

Note that setting num=1 yields a piecewise linear plot, identical

to the result obtained via ListPlot, with PlotJoined−>True.

NOTE: Either NaturalCubicSpline or ClampedCubicSpline

must be executed prior to calling PiecewiseCubicPlot."

Begin@"`Private`"D
Unprotect@ClampedCubicSpline, NaturalCubicSpline, IntegrateSpline,

PiecewiseCubicPlot, BSplineInterpolation, S, PeriodicSplineD
S@i_, x_D := a@iD + b@iD Hx − t@iDL + c@iD Hx − t@iDL2 + d@iD Hx − t@iDL3
WriteEquations := BlockA8i<, EquationList = 8<;
EquationList = Append@EquationList, S@n − 1, t@nDD
 a@nDD;
DoAEquationList = Append@EquationList, S@i, t@i + 1DD
 S@i + 1, t@i + 1DDD;
EquationList = Append@EquationList,

Expand@∂xS@i, xD ê. x → t@i + 1DD
 Expand@∂xS@i + 1, xD ê. x → t@i + 1DDD;
EquationList = AppendAEquationList, ExpandA∂8x,2<S@i, xD ê. x → t@i + 1DE

ExpandA∂8x,2<S@i + 1, xD ê. x → t@i + 1DEE, 8i, 0, n − 2<EE
MakeUnknowns := Block@8i<, Unknowns = 8<;
Do@Unknowns = Append@Unknowns, b@iDD, 8i, 0, n − 1<D;
Do@Unknowns = Append@Unknowns, c@iDD, 8i, 0, n − 1<D;
Do@Unknowns = Append@Unknowns, d@iDD, 8i, 0, n − 1<DD

SolvetheSystem := BlockB8<, Result = N@Solve@EquationList, UnknownsDD;
DoBb@i − 1D = ResultP1, i, 2T; c@i − 1D = ResultP1, i + n, 2T;

d@i − 1D = ResultP1, i + 2 n, 2T, :i, 1,
3 n

3
>F;

Print@"The spline is constructed as follows: "D;
Do@Print@"S@", i, ",xD = ", Expand@S@i, xDD,

" for ", t@iD, " < x < ", t@i + 1DD, 8i, 0, n − 1<DF
SolvetheBSplineSystem := Block@8<, Result = N@Solve@EquationList, UnknownsDD;

a@1D = ResultP1, 1, 2T; a@n − 1D = ResultP1, 2, 2T;
Do@b@i − 3D = ResultP1, i, 2T; c@i − 3D = ResultP1, i + n, 2T;
d@i − 3D = ResultP1, i + 2 n, 2T, 8i, 3, 3 + n − 1<D;

Print@"The B spline is constructed as follows: "D;
Do@Print@"S@", i, ",xD = ", Expand@S@i, xDD,

" for ", t@iD, " < x < ", t@i + 1DD, 8i, 0, n − 1<DD
SolvePeriodicSystem := Block@8<, LHS = Table@Row@iD, 8i, 0, 3 n − 1<D;

RHS = Table@constant@iD, 8i, 0, 3 n − 1<D;
Result = LinearSolve@LHS, RHSD; Do@b@i − 1D = ResultPiT;
c@i − 1D = ResultPi + nT; d@i − 1D = ResultPi + 2 nT, 8i, 1, n<D;D

WriteandSolvePeriodicEquations := BlockA8i<, Clear@Row, Equation, b, c, dD;
DoAEquation@iD = HS@i, t@i + 1DD − a@iDL − HS@i + 1, t@i + 1DD − a@i + 1DL;
constant@iD = −a@iD + a@i + 1D; Equation@i + n − 1D =

Expand@∂xS@i, xD ê. x → t@i + 1DD − Expand@∂xS@i + 1, xD ê. x → t@i + 1DD;
constant@i + n − 1D = 0; Equation@i + 2 n − 2D =

ExpandA∂8x,2<S@i, xD ê. x → t@i + 1DE − ExpandA∂8x,2<S@i + 1, xD ê. x → t@i + 1DE;
E

NumericalExamples.nb 41

constant@i + 2 n − 2D = 0, 8i, 0, n − 2<E;
Equation@3 n − 3D = S@n − 1, t@nDD − a@n − 1D − S@0, t@0DD;
constant@3 n − 3D = a@0D − a@n − 1D; Equation@3 n − 2D =

Expand@∂xS@0, xD ê. x → t@0DD − Expand@∂xS@n − 1, xD ê. x → t@nDD;
constant@3 n − 2D = 0; Equation@3 n − 1D =

ExpandA∂8x,2<S@0, xD ê. x → t@0DE − ExpandA∂8x,2<S@n − 1, xD ê. x → t@nDE;
constant@3 n − 1D = 0; Do@Row@jD = 8<; Row@jD = Append@Row@jD,

Table@Coefficient@Equation@jD, b@iDD, 8i, 0, n − 1<DD; Row@jD = Append@
Row@jD, Table@Coefficient@Equation@jD, c@iDD, 8i, 0, n − 1<DD; Row@jD =

Append@Row@jD, Table@Coefficient@Equation@jD, d@iDD, 8i, 0, n − 1<DD;
Row@jD = Flatten@Row@jDD, 8j, 0, 3 n − 1<D;
MakeUnknowns; SolvePeriodicSystemE

NaturalCubicSpline@slist_ListD :=

BlockA8i<, Clear@a, b, c, dD; SplineData = N@slistD;
MinNumberofPoints = 3; If@Length@SplineDataD < MinNumberofPoints,

Message@CubicSpline::"smallnerr", Length@SplineDataD,
MinNumberofPointsD; Return@Hold@NaturalCubicSpline@dataDDDD;

If@SplineData ≠ Sort@SplineDataD, SplineData = Sort@SplineDataDD;
xlist = Table@SplineDataPi, 1T, 8i, Length@SplineDataD<D;
If@xlist ≠ Union@xlistD, Message@CubicSpline::"nonfunctionerr", xlistD;
Return@DD; n = Length@SplineDataD − 1; Do@t@iD = SplineDataPi + 1, 1T;
a@iD = SplineDataPi + 1, 2T, 8i, 0, n<D; WriteEquations;

EquationList = AppendAEquationList, ExpandA∂8x,2<S@0, xD ê. x → t@0DE
 0E;
EquationList = AppendAEquationList, ExpandA∂8x,2<S@n − 1, xD ê. x → t@nDE
 0E;
MakeUnknowns; SolvetheSystemE

ClampedCubicSpline@slist_ListD :=

Block@8i<, Clear@a, b, c, dD; SplineData = N@slistD;
MinNumberofPoints = 4; If@Length@SplineDataD < MinNumberofPoints,

Message@CubicSpline::"smallnerr", Length@SplineDataD,
MinNumberofPointsD; Return@Hold@ClampedCubicSpline@dataDDDD;

LeftDeriv = SplineDataPLength@SplineDataD, 1T;
RightDeriv = SplineDataPLength@SplineDataD, 2T;
SplineData = Drop@SplineData, −1D;
If@SplineData ≠ Sort@SplineDataD, SplineData = Sort@SplineDataDD;
xlist = Table@SplineDataPi, 1T, 8i, Length@SplineDataD<D;
If@xlist ≠ Union@xlistD, Message@CubicSpline::"nonfunctionerr", xlistD;
Return@DD; n = Length@SplineDataD − 1;

Do@t@iD = SplineDataPi + 1, 1T; a@iD = SplineDataPi + 1, 2T, 8i, 0, n<D;
WriteEquations; EquationList = Append@EquationList,
Expand@∂xS@0, xD ê. x → t@0DD
 LeftDerivD; EquationList =

Append@EquationList, Expand@∂xS@n − 1, xD ê. x → t@nDD
 RightDerivD;
MakeUnknowns; SolvetheSystemD

BSplineInterpolation@slist_ListD :=

BlockA8i<, Clear@a, b, c, dD; SplineData = N@slistD;
MinNumberofPoints = 5; If@Length@SplineDataD < MinNumberofPoints,

NumericalExamples.nb 42

Message@CubicSpline::"smallnerr", Length@SplineDataD,
MinNumberofPointsD; Return@Hold@BSplineInterpolation@dataDDDD;

LeftDeriv = SplineDataPLength@SplineDataD, 1T;
RightDeriv = SplineDataPLength@SplineDataD, 2T;
SplineData = Drop@SplineData, −1D;
If@SplineData ≠ Sort@SplineDataD, SplineData = Sort@SplineDataDD;
xlist = Table@SplineDataPi, 1T, 8i, Length@SplineDataD<D;
If@xlist ≠ Union@xlistD,
Message@CubicSpline::"nonfunctionerr", xlistD; Return@DD;

n = Length@SplineDataD − 1; Do@t@iD = SplineDataPi + 1, 1T, 8i, 0, n<D;
a@0D = SplineDataP1, 2T; a@nD = SplineDataPn + 1, 2T;
Do@a@iD = SplineDataPi + 1, 2T, 8i, 2, n − 2<D; WriteEquations;

EquationList = AppendAEquationList, ExpandA∂8x,2<S@0, xD ê. x → t@0DE
 0E;
EquationList = AppendAEquationList, ExpandA∂8x,2<S@n − 1, xD ê. x → t@nDE
 0E;
EquationList = Append@EquationList,

Expand@∂xS@0, xD ê. x → t@0DD
 LeftDerivD; EquationList =

Append@EquationList, Expand@∂xS@n − 1, xD ê. x → t@nDD
 RightDerivD;
MakeUnknowns; Unknowns = Prepend@Unknowns, a@n − 1DD;
Unknowns = Prepend@Unknowns, a@1DD; SolvetheBSplineSystemE

PeriodicSpline@slist_List, opts___RuleD :=

BlockB8i, plotpoints, X, Y<, Clear@a, b, c, dD;
plotpoints = PlotPoints ê. 8opts< ê. Options@PlotD; SplineData = slist;

MinNumberofPoints = 3; If@Length@SplineDataD < MinNumberofPoints,

Message@CubicSpline::"smallnerr", Length@SplineDataD,
MinNumberofPointsD; Return@Hold@NaturalCubicSpline@dataDDDD;

n = Length@SplineDataD; Do@t@iD = i + 1; a@iD = SplineDataPi + 1, 1T;
aa@iD = SplineDataPi + 1, 2T, 8i, 0, n − 1<D; t@nD = n + 1; a@nD = a@0D;
WriteandSolvePeriodicEquations; title = "PeriodicCubicSpline";

DoBX@iD = DropBTableBN@S@i, xDD, :x, t@iD, t@i + 1D, t@i + 1D − t@iD
plotpoints

>F, −1F,

8i, 0, n − 2<F;

X@n − 1D = TableBN@S@n − 1, xDD, :x, t@n − 1D, t@nD, t@nD − t@n − 1D
plotpoints

>F;
AbscissaPoints = Flatten@Table@X@iD, 8i, 0, n − 1<D, 1D; Clear@a, b, c, dD;
Do@a@iD = aa@iD, 8i, 0, n − 1<D; a@nD = a@0D; WriteandSolvePeriodicEquations;

DoBY@iD = DropBTableBN@S@i, xDD, :x, t@iD, t@i + 1D, t@i + 1D − t@iD
plotpoints

>F, −1F,

8i, 0, n − 2<F;

Y@n − 1D = TableBN@S@n − 1, xDD, :x, t@n − 1D, t@nD, t@nD − t@n − 1D
plotpoints

>F;
OrdinatePoints = Flatten@Table@Y@iD, 8i, 0, n − 1<D, 1D; SplineData = Table@

8AbscissaPointsPiT, OrdinatePointsPiT<, 8i, Length@OrdinatePointsD<D;
ListPlot@SplineData, Joined → True, PlotLabel → titleDF

B

NumericalExamples.nb 43

PiecewiseCubicPlot@opts___RuleD := BlockB8i, plotpoints<,
plotpoints = PlotPoints ê. 8opts< ê. Options@PlotD;
title = PlotLabel ê. 8opts< ê. Options@PlotD;
DoBplot@iD = TableBN@8x, S@i, xD<D, :x, t@iD, t@i + 1D, t@i + 1D − t@iD

plotpoints
>F,

8i, 0, n − 1<F; SplinePlot = ListPlot@Flatten@
Table@plot@iD, 8i, 0, n − 1<D, 1D, Joined → True, PlotLabel → titleDF

IntegrateSpline := BlockB8i<, SplineIntegral =

‚
i=0

n−1

a@iD Ht@i + 1D − t@iDL +
1

2
b@iD Ht@i + 1D − t@iDL2 +

1

3
c@iD Ht@i + 1D − t@iDL3 + 1

4
d@iD Ht@i + 1D − t@iDL4 ;

Print@"The integral of the cubic spline is ", SplineIntegral, "."DF
End@D
Protect@NaturalCubicSpline, ClampedCubicSpline, BSplineInterpolation,

PiecewiseCubicPlot, PeriodicSpline, IntegrateSplineD
EndPackage@D

NumericalExamples.nb 44

