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Introduction

Mathematica is being used in industry to solve difficult and highly complex problems, formerly insoluble or requiring the power

of at least a mini-computer.  With Mathematica, solutions to these problems are possible in a much shorter time-frame.  Programs

that in the past required months or years of effort are now capable of development in days or weeks.  Mathematica is a valuable

and indispensable tool for many reasons, not the least of which are the complete, powerful and self-contained programming

environment; Mathematica  notebooks which permit us to combine dynamic calculations, graphics, on-line help and examples,

and provide a common environment in which non-specialists may use highly specialized technical results as long as they under-

stand Mathematica; and the ease of interfacing Mathematica with a variety of other programs.  In the following, two industrial

applications in which the author has successfully applied Mathematica are described.  

This notebook also includes examples of how Mathematica  can be used with programs such as Microsoft Word (for equation

writing); Adobe Illustrator and Aldus Freehand (for high-quality graphics production); Sigma Plot (for scientific plotting); and

Microsoft Excel (for import/export of Mathematica data, and interface with MathLink.)  Additionally, the author has combined

Mathematica with LabTech Notebook, a data acquisition program, and Visual BASIC.

Description of the Tempering Process

Tempered (strengthened) glass for automotive and architectural uses (such as back and side-lites, patio doors and the like) is

heated by radiation (or forced convection, or radiation and forced convection), to the processing temperature, then strengthened

by quenching to handling temperature.  



The Problem

We need to know the temperature-time and stress-time response of an arbitrary piece of glass under various operating conditions.

We need to be able to predict the cooling power (convection heat transfer coefficient) required for "full temper", as well as the

thermal response imposed by the furnace.
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Description of Heat Transfer in Radiation Furnace

Mathematica is used in two major areas:

1)  As a program for computing transient temperature and stress distributions in glass;

2)  In prediction of the forced convection heat transfer coefficient in the quenching process.

Both of the above processes are summarized in the following.

Prior to using Mathematica, the calculations in (1) were carried out via a Unix workstation FORTRAN program, which has been

converted into Mathematica  for Macintosh and IBM, and is being extended to contain 2-D capability, general boundary condi-

tions and improved convergence capability.  The forced convection coefficient of (2)  is empirically determined in an experimen-

tal setting where Mathematica is used to compute and map temperature and convection profiles.  Soon, Mathematicamay be used

in our data acquisition process as well (rather than LabTech Notebook.)  

Advantages of using Mathematica in these applications include:

i.  The Mathematica program runs on personal computers; it is friendly, documented and contains on-line help, program descrip-
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tion and theory; built-in examples; definition of all required symbols (using symbol::usage  =" " structure); is easily

extensible and  understandable;  can interact  with  Excel and other programs via  MathLink;  has  animation capability; can be

dynamically inspected and modified during runtime via Enter  Dialog.

ii.   Results  obtained from Mathematica  enable  us  to  better  understand  glass  thermal  history;  predict  parameters  leading to

successful tempering by better understanding the heat transfer process; design new processes.

iii.  Many of these calculations would have been difficult if not impossible to carry out in anything but Mathematica, where they

can usually be done in a line or so.  

iv.  These problems are typical of what one might face in industry, where some programming must be done to solve problems

which have not been previously solved.

Calculation of Temperature Profiles in Glass

In analyzing the radiant heating of glass, we consider a one-dimensional transient model.  The glass sheet is subdivided into n

layers.  An energy balance on a typical layer is:

outstgin EEEE &&&& +=+

where:

Ein is the energy in to the layer, which is the sum of radiation by reflection and absorption (Qr, Qa); and the energy conducted

from a neighboring layer (Qc).

Eout is the energy out of the slab, which occurs by emission.     

Est is the rate of change of storage of internal energy.  

Eg is the rate of internal energy generation (0 here).  Then the energy balance becomes:

The temperatures are updated from previous values in accordance with the scheme

( )
dt

dT
ckQQQQn pcrea ρ=++−22

In the above equation, the value of dT/dt is computed from the energy balance.  The temperatures are stored as a list Tempera-

tures and the above calculation may be implemented as:  

t
dt

dT
TT ii ∆+=+1

newtemps  =   Drop[Temperatures,-1] +    

    Actist dTdt;

Temperatures = 

    AppendTo[newtemps,newtemps[[Nd2]] ];

Also, n is the glass index of refraction; Qa, Qe and Qr are radiation functions computed as:

 Qa = 

     Sum[Gamm[ktlist[[#]],j] Wh[j] zeta[ktlist[[#]],j,#],
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        {j,1,mm1}]& /@ Range[Nh1];

   Teab = Te + 273;

Qe = 

     2 Sum[Gamm[ktlist[[#]],j] Wbb[j,Teab[[#]] ],

       {j,1,mm1}]& /@ Range[Nh1];      

       

Klist = Take[Transpose[{Teab,RotateLeft[Teab]}],Nh1-1];

Qr = Sum[Gamm[ktlist[[#]],j]*

      Table[psi[ktlist[[#]],j,#,i],{i,Nh1-1}].

Apply[Plus,Wbb[j,Klist],1],

              {j,1,mm1}]& /@ Range[Nh1];

              

fact =  (1-Reflm) Wh[m]-

         Emism Wbb[m,Tsura]+h (Tamb-Tsur)-Tcon[Temperatures[[1]] ]*

              (Tsur-Temperatures[[2]])/deltx;) (* end of If *)]; 

and Qc is given as
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where we use a Laplace Operator for this (below from Shaw and Tigg, Applied Mathematica:  Getting it Started, Getting it Done).

Laplace[data_List] := 

   RotateRight[data] - 2 data + 

      RotateLeft[data]

   

LaplaceInterior[data_List] := 

   Drop[Rest[Laplace[data]],-1]

ü Example:

Laplace[Array[k,{10}] ]

8−2 k@1D + k@2D + k@10D, k@1D − 2 k@2D + k@3D, k@2D − 2 k@3D + k@4D,

k@3D − 2 k@4D + k@5D, k@4D − 2 k@5D + k@6D, k@5D − 2 k@6D + k@7D, k@6D − 2 k@7D + k@8D,

k@7D − 2 k@8D + k@9D, k@8D − 2 k@9D + k@10D, k@1D + k@9D − 2 k@10D<

Empirical Calculation of Forced Convection Coefficient

Glass is tempered by rapidly cooling it from the process temperature of 620 C to the strain temperature of about 520 C.  Glass

may break during tempering if the transient stresses exceed the yield stresses.  Glass may break if it is too hot or too cool during

quenching.  There is a "tempering window" illustrated below.  (This curve was rendered in Jandel Scientific's Sigma Plot with

tab-delimited output from the Mathematica glass tempering program.)
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To predict the heat transfer coefficient, an experimental test rig is used consisting of a heated thin foil, an Inframetrics Radiation

Scanning Radiometer (IRSR), a data acquisition system and Mathematica.  The set up is shown schematically as:

The IRSR camera senses radiant emission from the foil.  Based on calibration tables, these can be converted into temperatures.

Mathematica  is used with Microsoft EXCEL, Visual Basic and LabTech Notebook to analyze the data, print a summary report
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including contour plots.  Animations, curve fitting, statistical and trend analysis are some of the desired outcomes.  A sample

report is generated by Mathematica as:  

Report

RESULTS FOR MODULE BA Version 2, z = 50 mm , 30 inch water column

The time is 21:39:54.31.

The date is  4-08-1994.

Nozzle-to-foil distance = 50 mm.

Camera-to-foil distance = 250 mm.

Horizontal, Vertical Spatial Resolution = 1.949 , 0.738

Ambient Temperature = 21.4708 C.

Plenum Temperature = 23.3908 C.

Plenum Pressure = 30.6058 in.w.c.

Foil Power = 123.16 W.

Heat Flux = 779.003 W/m^2.

Foil Surface Temperature = 47.1194 C.

The minimum and maximum h's are: 0.00654722 , 0.0143878 cal/cm^2-s-C.

Average Convection Coefficient = 0.00895142 cal/cm^2-s-C.

                                                6

RMS Value of Convection Coefficient = 3.59667 10

Data were read from file Quadra 800 HD:glasstech:L108:L108\

 

   Images:ba_50.dat

Results were stored in file: Quadra 800 HD:glasstech:L108:L108\

 

   Images:0004
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Module BA Version 2, z = 50 mm , 30 inch water column
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Coloring the Contour Plot

Mathematica  has a built-in function, ListContourPlot, which can work with arrays of heights to render a contour plot.  The data

may be colored with greys or the function Hue.  One problem is that the unmodified Hue is for periodic data:  in

ListContourPlot[data], the extreme values of data are mapped to Hue[0] and Hue[1], which are both red.  We didn't want this so

had to come up with our own coloring function, shown below.  

ShowLegend[

ListContourPlot[hData,

   DisplayFunction->Identity,

   ColorFunction->

      (Hue[Min[hData]/200+(Hue[#] /.   

         Hue[x_] -> 

    (Max[hData]-Min[hData])/200 x)]&),

PlotLabel->plottitle,

AspectRatio->200/326],

  {Hue[1-#]&,20,"0.020", "0",

      LegendPosition->{1.1,-.4}}]

ü Redefining Hue

The default coloring is exhibited with an array of data:

TableForm[huedata=

  Transpose[Table[j+i,{i,0,.9,.1},{j,0,9,1}]]/10//N,

  TableSpacing->2*Table[1,{10}]];
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ListDensityPlot[huedata,ColorFunction->Hue,

PlotLabel->"Color Hue Values"];
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The default Hue, then, is periodic.  Suppose that we want to have the maximum value mapped to Hue[0.7].  Since Hue is a linear

map, we can define a linear function having the properties that we seek.  Thus Max[ourdata]  -> Hue[0.7],  Min[ourdata]  ->

Hue[0].  Then our function is defined by

ListDensityPlot@huedata, ColorFunction →

HHue@Min@huedataD 0.7` + HHue@�1D ê. Hue@x_D → HMax@huedataD − Min@huedataDL 0.7` xLD &L,

PlotLabel → "Color Hue Values"D
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More details of the programming involved will be covered in another talk, "Report from the Trenches:  Tips, Tricks and Traps for

Mathematica Programmers."
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