1. Definitions

- <u>Stationary Time Series</u>- A time series is stationary if the properties of the process such as the mean and variance are constant throughout time.
 - i. If the autocorrelation dies out quickly the series should be considered stationary
 - ii. If the autocorrelation dies out slowly this indicates that the process is non-stationary
- <u>Nonstationarity-</u> A time series is nonstationary if the properties of the process are not constant throughout time
 - i. Unit Root Nonstationarity-
 - ii. Random Walk with Drift-
- <u>White Noise-</u> A time series is called a white noise if a sequence of independent and identically distributed random variables with finite mean and variance, usually WN(0, σ^2). White noise has covariance
- <u>Backward shift operator</u> a short hand for shift backward in the time series. $\beta Y_t = Y_{t-1}$ $\beta^p Y_t = Y_{t-p}$

2. Autocorrelation

- Measures the linear dependence or the correlation between r_t and $r_{t\text{-p.}}$ (summarizes serial dependence)

•
$$\rho_{l} = \frac{Cov(r_{t}, r_{t-l})}{\sqrt{Var(r_{t})Var(r_{t-l})}} = \frac{Cov(r_{t}, r_{t-l})}{Var(r_{t})}$$

where $Var(r_{t}) = Var(r_{t-1})$ for weakly stationary process

- A way to check randomness in the data
- Lag 0 of the autocorrelation is 1 by definition
 - i. If the autocorrelation dies out slowly this indicates that the process is non-stationary.
 - ii. If all the ACFs are close to zero, then the series should be considered white noise.
- No Memory Series
 - i. Autocorrelation function is zero
- Short Memory Series
 - i. Autocorrelation function decays exponentially as a function of lag
- Long Memory Series
 - i. Autocorrelation function decays at polynomial rate
 - ii. The "differencing" exponent is between $-\frac{1}{2}$ and $\frac{1}{2}$.

3. Partial Autocorrelation

• Correlation between observations X_t and X_{t+h} after removing the linear relationship of all observations in that fall between X_t and X_{t+h} .

 $\begin{aligned} r_t &= \phi_{0,1} + \phi_{1,1}r_{t-1} + e_{1,t} \\ r_t &= \phi_{0,2} + \phi_{1,2}r_{t-1} + \phi_{2,2}r_{t-2} + e_{2,t} \\ r_t &= \phi_{0,3} + \phi_{1,3}r_{t-1} + \phi_{2,3}r_{t-2} + \phi_{3,3}r_t + e_{3,t} \\ \vdots \end{aligned}$

Each $\hat{\phi}_{p,p}$ is the lag-p PACF

• The PACF shows the added contribution of r_{t-p} to predicting r_t .

4. Diagnostics and Model Selection

Residual Diagnostics

- i. The residuals should be stationary white noise
- ii. The ACF and PACF should all be zero
 - **a.** If there is a long memory in the residuals then the assumptions are violated nonstationarity of residuals

• AIC (Akaike's Information Criterion)

- i. A measure of fit plus a penalty term for the number of parameters
- ii. Corrected AIC- stronger penalty term ~ makes a difference with smaller sample sizes
- iii. Choose the model that minimizes this adjusted measure fit
- iv. AIC_k = log(MLE estimate of the noise variance) + 2k/T, where T is the sample size and k is the number of parameters in the model

Portmanteau Test

- i. Tests whether the first m correlations are zero vs. the alternative that at least one differs from zero.
- ii. The sum of the first m squared correlation coefficients
- iii. $\begin{aligned} H_0: \rho_1 = \dots = \rho_m = 0\\ H_a: \rho_i \neq 0 \end{aligned}$ w
 - where ρ_i is the autocorrelation
- iv. Box and Pierce

$$Q^*(m) = T \sum_{l=1}^{m} \hat{p}_l^2$$

Q*(m) is asymptotically a chi-squared random variable with m degrees of freedom

v. Ljung and Box

$$Q(m) = T(T+2)\sum_{l=1}^{m} \frac{\hat{\rho}_{l}^{2}}{T-l}$$

Modified Box & Pierce statistic to increase power

• Unit Root Test

i. Derived in 1979 by Dickey and Fuller to test the presence of a unit root vs. a stationary process

ii.
$$\rho_t = \phi_1 \rho_{t-1} + e_t$$
 $\rho_t = \phi_0 + \phi_1 \rho_{t-1} + e_t$

If $\phi_1 = 1$ then he series is said to have unit root and is not stationary. The unit root test determines if ϕ is significantly close to 1.

$$H_0: \phi_1 = 1$$

 $H_A: \phi_1 < 1$

iii. The behavior of the test statistics differs if it is a random walk with drift or if it is a random walk without drift.

5. **Unit Root Nonstationary Process**

Random Walk •

- i. The equation for a random walk is $\rho_t = \rho_{t-1} + a_t$, where ρ_0 denotes the starting values and a_t is white noise.
- ii. A random walk is not predictable and this can not be forecasted.
- iii. All forecasts of a random-walk model are simply the value of the series at the forest origin.
- iv. The series has a strong memory

Random Walk with Drift

i.
$$\rho_t = \mu + \rho_{t-1} + a_t$$
, where $\mu = E(\rho_t - \rho_{t-1})$
 $\rho_1 = \mu + \rho_0 + a_1$
 $\rho_2 = \mu + \rho_1 + a_2 = 2\mu + \rho_0 + a_2 + a_1$
 \vdots
 $\rho_t = t\mu + \rho_0 + a_t + a_{t-1} + \dots + a_1$

A positive μ implies that the series eventually goes to infinity.

6. Differencing

- Reasons why the Difference is taken •
 - i. To transform non-stationary data into a stationary time series
 - ii. To remove seasonal trends

 - a. take 4th difference for quartly data
 b. take 12th difference for monthly data
- <u>First Difference</u>- The first difference of a time series is $z_t = y_t y_{t-1}$
 - i. A way to handle strong serial correlation of ACF is to take the first difference
- <u>Second Difference</u>- The second difference is $z_t = (y_t y_{t-1}) (y_{t-1} y_{t-2})$

7. Log Transformation

- Reasons to take log transformation
 - i. Used to handle exponential growth of a series
 - ii. Used to stabilize the variability
- Values must all be positive before the log is taken

i. If not all values are positive a positive constant can be added to every data point

8. Autoregressive Model

- A regression model in which r_t is predicted using past values, r_{t-1} , r_{t-2} ,...
 - i. AR(1): $r_t = \phi_0 + \phi_1 r_{t-1} + a_t$, where a_t is a white noise series with zero mean and constant variance

ii. AR(p): $r_t = \phi_0 + \phi_1 r_{t-1} + \dots + \phi_p r_{t-p} + a_t$

- Weak stationary is the sufficient and necessary condition of an AR model
 - i. For an AR model to be stationary all of its characteristic roots must be less than 1 in modulus
- ACF for Autoregressive Model
 - i. The ACF decays exponentially to zero
 - 1) For $\phi > 0$, the plot of ACF for AR(1) should decay exponentially
 - 2) For $\phi < 0$, the plot should consist of two alternating exponential decays with rate ϕ_1^2 .
 - ii. The ACF for AR(1) $\rho_l = \phi_1 \rho_{l-1}$, because $\rho_0 = 1$ then $\rho_l = \phi_1^2$. So the ACF for the AR(1) should decay to exponentially with rate ϕ_1 starting at $\rho_0 = 1$
- PACF for Autoregressive Model
 - ii. The PACF is zero after the lag of the AR process
 - iii. $\hat{\phi}_{l,l}$ converges to zero for all l > p. Thus for AR(p) the PACF cuts off at lag p.

9. Moving Average Model

- A linear regression of the current value of the series against the white noise or random shocks of one or more prior values of the series.
 - i. $X_t = \mu + a_t \theta_1 a_{t-1}$, where μ is the mean of the series, a_{t-i} are

white noise, and θ_1 is a model parameter.

- The MA model is always stationary as it is the linear function of uncorrelated or independent random variables.
- The first two moments are time-invariant
- MA model can be viewed as a infinite order AR model
- ACF for Moving Average Model
 - ii. The ACF is zero after the largest lag of the process
- PACF for Moving Average Model
 - i. The PACF decays to zero
- 10. ARMA [p,q]

- The series r_t is a function of past values plus current and past values of the noise.
 - Combines an AR(p) model with a MA(q) model
- The equation for a ARMA(1,1) is $r_t = \phi_1 r_{t-1} + a_t + \theta_1 a_{t-1}$
- ACF for ARMA
 - i. The ACF begins to decay exponentially to zero after the largest lag of the MA component.

11. ARIMA

- r_t is an ARIMA model if the first difference of r_t is an ARMA model.
- In an ARMA model, if the AR polynomial has 1 as the characteristic root, then the model is a ARIMA
- Unit-root nonstationary because it's AR has unit root.
- ARIMA has strong memory

12. ARFIMA

• A process is a fractional ARMA (ARFIMA) process if the fractional differenced series follows an ARMA(p,q) process. Thus if a series $(1-B)^d x_t$ follows ARMA(p,q) model, then the series is an ARFIMA(p,d,q).

13. Forecasting

- The multistep forecast converges to the mean of the series and the variances of forecast errors converge to the variance of the series.
- For AR Model
 - i. The 1-step ahead forecast is the conditional expectation

$$\hat{r}_h(1) = E(r_{h+1} \mid r_h, r_{h-1}, \dots) = \phi_0 + \sum_{i=1}^p \phi_i r_{h+1-i}$$

- ii. For multistep ahead forecast: $\hat{r}_h(l) = \phi_0 + \sum_{i=1}^p \phi_i r_{h+l-i}$
- iii. The forecast error for 1 –step ahead: $e_h(1) = r_{h+1} \hat{r}_h(1) = a_{h+1}$
- iv. Mean reverting. For a stationary AR(p) model, long –term point forecasts approach then unconditional mean. Also, the variance of the forecast approaches the unconditional variance of r_t .
- For MA Model
 - i. Because the model has finite memory, its point forecasts go to the mean of the series quickly.
 - ii. The 1-step ahead forecast for MA(1) is the conditional expectation $\hat{r}_h(1) = E(r_{h+1} | r_h, r_{h-1}, ...) = c_o - \theta_1 a_h$ The 2-step ahead forecast for MA(1)

$$\hat{r}_h(1) = E(r_{h+1} \mid r_h, r_{h-1}, \dots) = c_o$$

iii. For a MA(q) model, the multistep ahead forecasts go to the mean after the first q steps.

14. Spectral Density

- A way of representing a time series in terms of harmonic components at various frequencies. Tells the dominant cycles or periods in the series
- Spectral Density is only appropriate for stationary time series data.
- A <u>Periodogram</u> at a particular frequency ω is proportional to the squared amplitude of the corresponding cosine wave, $\alpha \cos(\omega t) + \beta \sin(\omega t)$, fitted to the data using least squares.
- For a Covariance stationary time series (CSTS) with autocovariance function $\gamma(v)$, $v = 0, \pm 1, \pm 2...$ the spectral density is given by

$$f(v) = \sum_{n = -\infty}^{\infty} \gamma(h) e^{-2\pi i v h}$$

where $v \in [-1/2, 1/2]$
$$\gamma(h) = \int_{-1/2}^{1/2} e^{2\pi i v h} f(v) dv$$

15. VaR – Value at Risk

- Estimates the amount which an institution's position in a risk category could decline due to general market movements during a given holding period.
- Concerned with market risk
- In reality, used to assess risk or set margin requirements
- i. Ensures that financial institutions can still be in business after a catastrophic event
- Determined via forecasting
- If multivariate:
 - i. $VaR = \sqrt{VaR_1^2 + VaR_2^2 + 2\rho VaR_1 VaR_2}$

16. VAR – Vector Autoregressive Model

- A vector model used for multivariate time series
 - i. VAR(1): $\mathbf{r}_{t} = \phi_{0} + \mathbf{\Phi}_{1}\mathbf{r}_{t-1} + \mathbf{a}_{t}$; where ϕ_{0} is a k-dim vector, $\mathbf{\Phi}$ is a k x k matrix, and $\{\mathbf{a}_{t}\}$ is a sequence of serially uncorrelated random vectors with mean zero and covariance matrix $\boldsymbol{\Sigma}$. $\boldsymbol{\Sigma}$ positive definite.
- ii. VAR(p): $\mathbf{r}_{t} = \phi_{0} + \Phi_{1}\mathbf{r}_{t-1} + ... + \Phi_{p}\mathbf{r}_{t-p} + \mathbf{a}_{t}$
- Can also model VMA and VARMA models
- i. One issue, VARMA has an *identifiability* problem (i.e. may not be uniquely defined
- ii. When VARMA models are used, you should only entertain lower order models.

17. Volatility Models

- ARCH
- i. Only an AR term

ii. ARCH(m):
$$a_t = \sigma_t \mathcal{E}_t$$
$$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \dots + \alpha_m a_{t-m}^2$$

- iii. Weaknesses:
- Assume +ve & -ve shocks have same effects on volatility (i.e. use square of previous shocks to determine order) → use "leverage to account for the fact that ve shocks (i.e. "bad news") have larger impact on volatility than +ve shocks (i.e. "good news").
 - Model is restrictive (see p.86, 3.3.2(2))
- Only *describes* the behavior of the conditional variance. Does not *explain* the source of the variations.
- Likely to over-predict the volatility since the respond slowly to large isolated shocks to the return series.
 - GARCH generalized ARCH
 - i. Mean structure can be described by an ARMA model

$$a_t = \boldsymbol{\sigma}_t \boldsymbol{\varepsilon}_t$$

ii. GARCH(m,s):
$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$

- iii. Same weaknesses as the ARCH
- iv. If the AR component has a unit root, then we have an IGARCH model (i.e. Integrated GARCH; a.k.a. unit-root GARCH model)
- v. EGARCH (i.e. Exponential GARCH) allows for asymmetric effects between +ve & -ve asset returns. Models the log(cond. variance) as an ARMA. PRO: variances are guaranteed to be positive.
- GARCH-M GARCH in mean
- i. Used when the return of a security depends on its volatility

$$a_t = \sigma_t \varepsilon_t$$

ii. GARCH(1,1)-M: $r_t = \mu + c\sigma_t^2 + a_t$; where μ , c constant. A +ve c

$$\sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

indicates that the return is positively related to its past volatility.

- iii. Cross-Correlation: series correlated against series²; used to determine whether there exists volatility in the mean structure.
 - Alternative GARCH models
 - 1) CHARMA Conditional heteroscedastic ARMA uses random coefficients to produce conditional heteroscedasticity.
 - 2) RCA Random Coefficient Autoregressive model accounts for variability among different subjects under study. Better suited for modeling the conditional mean as it allows for the parameters to evolve over time.
 - 3) SV Stochastic Volatility model is similar to an EGARCH but incorporates an innovation to the conditional variance equation.

- 4) LMSV Long-Memory SV model allows for long memory in the volatility.
- **NOTE**: Differencing ONLY effects mean structure, Log Transformation effects volatility structure.

18. MCMC Methods (Markov Chain Monte Carlo)

- Markov chain simulation creates a Markov process on Θ , which converges to a stationary transition distribution, P(θ , X).
- GIBBS SAMPLING (p.397)
 - \circ Likelihood unknown, conditional distⁿs known.
 - Need starting values
 - Sampling from cond. distⁿ s converges to sampling from the joint distⁿ.
 - PRO: Compared to MCMC, Gibbs can decompose a high-dim estimation problem into several lower-dim ones.
 - CON: When parameters are highly correlated, you should draw them jointly.
 - In practice, repeat several times with different starting values to ensure the algorithm has converged.
- BAYESIAN INFERENCE (p. 400)
- Combines prior belief with data to obtain posterior distⁿs on which statistical inference is based.