
1. Definitions 

 

• Stationary Time Series- A time series is stationary if the properties of the 

process such as the mean and variance are constant throughout time. 

i. If the autocorrelation dies out quickly the series should be 

considered stationary 

ii. If the autocorrelation dies out slowly this indicates that the process 

is non-stationary 

• Nonstationarity- A time series is nonstationary if the properties of the process 

are not constant throughout time 

i. Unit Root Nonstationarity- 

ii. Random Walk with Drift-  

• White Noise- A time series is called a white noise if a sequence of 

independent and identically distributed random variables with finite mean and 

variance, usually WN(0, 2σ ). White noise has covariance 

• Backward shift operator – a short hand for shift backward in the time series.  

                βYt= Yt-1                                    β
p
Yt= Yt-p 

 

2. Autocorrelation 

 

• Measures the linear dependence or the correlation between rt and rt-p. 

(summarizes serial dependence)     
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where Var(rt) = Var(rt-1) for weakly stationary process 

 

• A way to check randomness in the data 

• Lag 0 of the autocorrelation is 1 by definition 

i. If the autocorrelation dies out slowly this indicates that the process 

is non-stationary. 

ii. If all the ACFs are close to zero, then the series should be 

considered white noise. 

• No Memory Series 

i. Autocorrelation function is zero 

• Short Memory Series 

i. Autocorrelation function decays exponentially as a function of lag  

• Long Memory Series  

i. Autocorrelation function decays at polynomial rate 

ii. The “differencing” exponent is between -½ and ½. 

 

3. Partial Autocorrelation 

 

• Correlation between observations Xt and Xt+h after removing the linear 

relationship of all observations in that fall between Xt and Xt+h.  
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Each pp,φ̂  is the lag-p PACF  

• The PACF shows the added contribution of rt-p to predicting rt . 

 

4. Diagnostics and Model Selection 

 

• Residual Diagnostics 

i. The residuals should be stationary – white noise 

ii. The ACF and PACF should all be zero 

a. If there is a long memory in the residuals then the 

assumptions are violated – nonstationarity of residuals 

 

• AIC (Akaike’s Information Criterion) 

i. A measure of fit plus a penalty term for the number of parameters 

ii. Corrected AIC- stronger penalty term ~ makes a difference with 

smaller sample sizes 

iii. Choose the model that minimizes this adjusted measure fit 

iv. AICk = log(MLE estimate of the noise variance) + 2k/T, where T is 

the sample size and k is the number of parameters in the model 

 

• Portmanteau Test 

i. Tests whether the first m correlations are zero vs. the alternative 

that at least one differs from zero. 

ii. The sum of the first m squared correlation coefficients 

iii. 
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iv. Box and Pierce  
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Modified Box & Pierce statistic to increase power 

 

• Unit Root Test 

i.  Derived in 1979 by Dickey and Fuller to test the presence of a unit 

root vs. a stationary process 

ii. ttt e+= −11ρφρ   ttt e++= −110 ρφφρ  



If 11 =φ  then he series is said to have unit root and is not stationary. 

The unit root test determines if φ  is significantly close to 1. 
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iii. The behavior of the test statistics differs if it is a random walk with 

drift or if it is a random walk without drift. 

 

5. Unit Root Nonstationary Process 

 

• Random Walk 

i. The equation for a random walk is ttt a+= −1ρρ , where 0ρ  

denotes the starting values and at  is white noise.  

ii. A random walk is not predictable and this can not be forecasted.  

iii. All forecasts of a random-walk model are simply the value of the 

series at the forest origin. 

iv. The series has a strong memory 

 

• Random Walk with Drift 

i. ttt a++= −1ρµρ , where )( 1−−= ttE ρρµ  
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A positive µ implies that the series eventually goes to infinity. 

 

6. Differencing 

 

• Reasons why the Difference is taken 

i. To transform non-stationary data into a stationary time series 

ii. To remove seasonal trends  

a. take 4
th

 difference for quartly data 

b. take 12
th

 difference for monthly data 

• First Difference- The first difference of a time series is 1−−= ttt yyz  

i. A way to handle strong serial correlation of ACF is to take the first 

difference 

• Second Difference- The second difference is )()( 211 −−− −−−= ttttt yyyyz  

 

7. Log Transformation 

 

• Reasons to take log transformation 

i. Used to handle exponential growth of a series 

ii. Used to stabilize the variability 

• Values must all be positive before the log is taken  



i. If not all values are positive a positive constant can be added to 

every data point 

 

8. Autoregressive Model 

 

• A regression model in which rt is predicted using past values, rt-1, rt-2,… 

i. AR(1) : ttt arr ++= −110 φφ , where at is a white noise series with 

zero mean and constant variance 

ii. AR(p): tptptt arrr ++++= −− φφφ ...110  

• Weak stationary is the sufficient and necessary condition of an AR model 

i. For an AR model to be stationary all of its characteristic roots 

must be less than 1 in modulus 

• ACF for Autoregressive Model 

i. The ACF decays exponentially to zero 

1) For 0>φ , the plot of ACF for AR(1) should decay 

exponentially 

2) For 0<φ , the plot should consist of two alternating 

exponential decays with rate 
2

1φ . 

ii.  The ACF for AR(1) 11 −= ll ρφρ , because 10 =ρ  then 
2

1φρ =l . So 

the ACF for the AR(1) should decay to exponentially with rate 1φ  

starting at 10 =ρ  

• PACF for Autoregressive Model 

ii. The PACF is zero after the lag of the AR process 

iii. ll ,φ̂ converges to zero for all l > p. Thus for AR(p) the PACF cuts 

off at lag p. 

 

9. Moving Average Model 

 

• A linear regression of the current value of the series against the white noise or 

random shocks of one or more prior values of the series.  

i. 11 −−+= ttt aaX θµ , where µ is the mean of the series, at-i are 

white noise, and θ1 is a model parameter. 

• The MA model is always stationary as it is the linear function of uncorrelated 

or independent random variables.  

• The first two moments are time-invariant 

• MA model can be viewed as a infinite order AR model 

• ACF for Moving Average Model 

ii. The ACF is zero after the largest lag of the process 

• PACF for Moving Average Model 

i. The PACF decays to zero 

 

10. ARMA [p,q] 



• The series rt is a function of past values plus current and past values of the 

noise.  

• Combines an AR(p) model with a MA(q) model 

• The equation for a ARMA(1,1) is 1111 −− ++= tttt aarr θφ  

• ACF for ARMA  

i. The ACF begins to decay exponentially to zero after the largest lag 

of the MA component. 

 

11. ARIMA 

 

• rt  is an ARIMA model if the first difference of rt is an ARMA model.  

• In an ARMA model, if the AR polynomial has 1 as the characteristic root, 

then the model is a ARIMA 

• Unit-root nonstationary because it’s AR has unit root. 

• ARIMA has strong memory 

 

12. ARFIMA 

 

• A process is a fractional ARMA (ARFIMA) process if the fractional 

differenced series follows an ARMA(p,q) process.  Thus if a series t

d
xB)1( −  

follows  ARMA(p,q) model, then the series is an ARFIMA(p,d,q). 

 

13. Forecasting 

 

• The multistep forecast converges to the mean of the series and the variances 

of forecast errors converge to the variance of the series. 

• For AR Model 

i. The 1-step ahead forecast is the conditional expectation  
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iii. The forecast error for 1 –step ahead: 11 )1(ˆ)1( ++ =−= hhhh arre  

iv. Mean reverting. For a stationary AR(p) model, long –term point 

forecasts approach then unconditional mean. Also, the variance of 

the forecast approaches the unconditional variance of rt. 

• For MA Model 

i. Because the model has finite memory, its point forecasts go to the 

mean of the series quickly. 

ii. The 1-step ahead forecast for MA(1) is the conditional expectation 

hohhhh acrrrEr 111 ,....),|()1(ˆ θ−== −+  

The 2-step ahead forecast for MA(1) 
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iii. For a MA(q) model, the multistep ahead forecasts go to the mean 

after the first q steps. 

 

14.  Spectral Density 

 

• A way of representing a time series in terms of harmonic components at 

various frequencies. Tells the dominant cycles or periods in the series 

• Spectral Density is only appropriate for stationary time series data. 

• A Periodogram at a particular frequency ω is proportional to the squared 

amplitude of the corresponding cosine wave, )sin()cos( tt ωβωα + , fitted to 

the data using least squares. 

• For a Covariance stationary time series(CSTS) with autocovariance function 

)(vγ , v = 0, ±1, ±2… the spectral density is given by 
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15. VaR – Value at Risk 

 

• Estimates the amount which an institution’s position in a risk category 

could decline due to general market movements during a given holding 

period. 

• Concerned with market risk 

• In reality, used to assess risk or set margin requirements 

i. Ensures that financial institutions can still be in business after a 

catastrophic event 

• Determined via forecasting 

• If multivariate: 

i. 21

2
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1 2 VaRVaRVaRVaRVaR ρ++=  

 

16. VAR – Vector Autoregressive Model 

 

• A vector model used for multivariate time series 

i. VAR(1): t1-t10t ar ++= rΦφ ; where φ0 is a k-dim vector, ΦΦΦΦ is a k x 

k matrix, and {at} is a sequence of serially uncorrelated random vectors 

with mean zero and covariance matrix ΣΣΣΣ.  Σ Σ Σ Σ positive definite.  

ii. VAR(p): tp-tp1-t0t ... ar ++++= rΦrΦ1φ  

• Can also model VMA and VARMA models 

i. One issue, VARMA has an identifiability problem (i.e. may not be 

uniquely defined 

ii. When VARMA models are used, you should only entertain lower order 

models. 

 



17. Volatility Models 

 

• ARCH 

i. Only an AR term 

ii. ARCH(m):  
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iii. Weaknesses:  

� Assume +ve & -ve shocks have same effects on volatility (i.e. use square of 

previous shocks to determine order) � use “leverage to account for the fact that –

ve shocks (i.e. “bad news”) have larger impact on volatility than +ve shocks (i.e. 

“good news”). 

� Model is restrictive (see p.86, 3.3.2(2)) 

� Only describes the behavior of the conditional variance.  Does not explain the 

source of the variations. 

� Likely to over-predict the volatility since the respond slowly to large isolated 

shocks to the return series. 

• GARCH – generalized ARCH 

i. Mean structure can be described by an ARMA model 

ii. GARCH(m,s):  
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iii. Same weaknesses as the ARCH 

iv. If the AR component has a unit root, then we have an IGARCH model 

(i.e. Integrated GARCH; a.k.a. unit-root GARCH model) 

v. EGARCH (i.e. Exponential GARCH) allows for asymmetric effects 

between +ve & -ve asset returns.  Models the log(cond. variance) as an 

ARMA.  PRO: variances are guaranteed to be positive. 

• GARCH-M - GARCH in mean 

i. Used when the return of a security depends on its volatility 

ii. GARCH(1,1)-M:  
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; where µ,  c constant. A +ve c 

indicates that the return is positively related to its past volatility. 

iii. Cross-Correlation: series correlated against series
2
; used to determine whether 

there exists volatility in the mean structure. 

• Alternative GARCH models 

1) CHARMA – Conditional heteroscedastic ARMA uses random coefficients to 

produce conditional heteroscedasticity. 

2) RCA – Random Coefficient Autoregressive model accounts for variability among 

different subjects under study. Better suited for modeling the conditional mean as 

it allows for the parameters to evolve over time. 

3) SV – Stochastic Volatility model is similar to an EGARCH but incorporates an 

innovation to the conditional variance equation. 



4) LMSV – Long-Memory SV model allows for long memory in the volatility. 

 

NOTE: Differencing ONLY effects mean structure, Log Transformation effects volatility 

structure. 

 

18. MCMC Methods (Markov Chain Monte Carlo) 

 

• Markov chain simulation creates a Markov process on Θ, which converges 

to a stationary transition distribution, P(θ, X). 

• GIBBS SAMPLING (p.397) 

o Likelihood unknown, conditional dist
n
s known. 

o Need starting values 

o Sampling from cond. dist
n
s converges to sampling from the joint dist

n
. 

o PRO:  Compared to MCMC, Gibbs can decompose a high-dim 

estimation problem into several lower-dim ones. 

o CON:  When parameters are highly correlated, you should draw them 

jointly. 

o In practice, repeat several times with different starting values to ensure 

the algorithm has converged. 

• BAYESIAN INFERENCE (p. 400) 

o Combines prior belief with data to obtain posterior dist
n
s on which 

statistical inference is based. 

 

 

 

 


